报告表编号

年

编号

建设项目环境影响报告表

项目名称: 15号厂房2楼汽车驾驶智能辅助系统建设项目

建设单位(盖章): 信利光电股份有限公司

编制日期: 2017年7月

国家环境保护部制

《建设项目环境影响报告表》编制说明

《建设项目环境影响报告表》由具有从事环境影响评价工作资质的单位编制。

- 1、项目名称——指项目立项批复时的名称,应不超过30个字(两个英文字段作一个汉字)。
- 2、建设地点——指项目所在地详细地址,公路、铁路应填写起止地点。
 - 3、行业类别——按国标填写。
 - 4、总投资——指项目投资总额。
- 5、主要环境保护目标——指项目区周围一定范围内集中居民住宅区、学校、医院、保护文物、风景名胜区、水源地和生态敏感点等,应尽可能给出保护目标、性质、规模和距厂界距离等。
- 6、结论与建议——给出本项目清洁生产、达标排放和总量控制的分析结论,确定污染防治措施的有效性,说明本项目对环境造成的影响,给出建设项目环境可行性的明确结论。同时提出减少环境影响的其他建议。
- 7、预审意见——由行业主管部门填写答复意见,无主管部门项目,可不填。
- 8、审批意见——由负责审批该项目的环境保护行政主管部门批 复。

一、建设项目基本情况

项目名称	15 号厂房 2 楼汽车驾驶智能辅助系统建设项目					
建设单位		信利光电股份有限公司				
法人代表	柞	木伟华		联系人	陈侈	安锋
通讯地址		汕	尾市城区	医东城路西北侧	信利工业城	
联系电话	337511	.9	传真	3370978	邮政编码	516600
建设地点		汕尾	市区和顺	路西侧信利工	业城 15 号厂房	
建 以地点	(北纬 22° 47'43.80",东经 115° 23'15.85")					
立项审批部门			批准文号			
**			行业类别及	C3969 光电子器件及其他电		
建设性质	√新建□□	双扩 建口	」 按以	代码	子器件制造	
占地面积		2000		绿化面积		
(平方米)		3000		(平方米)		
总投资	24600	其中:	环保投	(25	环保投资占总	
(万元)	34600	资(登 (万元) 625		资比例	0.018%
评价经费		4T Tu →			2017	<u> </u>
(万元)			1火1又厂	口 <i>别</i>	2017	十/ 広

建设项目基本概况:

(一) 项目背景

信利光电股份有限公司是信利集团在中国大陆的中外合资公司,其前身为信利光电(汕尾)有限公司,因募集资金上市而于 2013 年改为现名并获汕尾市工商行政管理局颁发新的营业执照,公司主要生产各式触摸屏、集成触控模组和微型摄像模组等,在信利工业城内有几条生产线,公司下设信利光电触摸屏事业部(简称 TPD)、信利光电触控显示模组事业部(简称 TDD)和信利光电微型摄像头事业部(简称 CCM)三个事业部,拥有一流先进的制造设备,领先及环保的制作工艺技术,高素质的专业研发及生产技术队伍,

经验丰富且稳定的生产和品质管理人员,以及全面可靠的测试系统。

为了生产需要,信利光电股份有限公司拟租用 15 号厂房第一层和第二层部分面积建设 15 号厂房 2 楼汽车驾驶智能辅助系统建设项目。15 号厂房位于汕尾市城区工业大道中段南侧信利工业城内,基底占地面积 7074.02m², 共 2 层。15 号厂房第一层及第二层部分建设项目为汽车驾驶智能辅助系统建设项目(以下简称本项目),15 号厂房一层还建设有 SMT 项目生产线,部分生产线项目建设未定。项目平面布置图见附图 4 和附图 5。

本项目以 PCB/FPC(印刷电路板/软性线路板)、ECU(电子控制单元)主板、镜头等为原料,生产以太网摄像头模组 200 万个/a,倒车智能后视系统、360 度全景泊车影像系统、车道偏离报警系统、夜视辅助系统、自适应巡航控制、驾驶员疲劳监控系统共 30 万套/a,总投资 3.46 亿元。

根据《中华人民共和国环境保护法(修订)》(2015 年 1 月 1 日起施行)、《中华人民共和国环境影响评价法(修订)》(2016 年 9 月 1 日起施行)、《建设项目环境保护管理条例》(国务院第 253 号令,1998 年 11 月 18 日起施行)、《建设项目环境影响评价分类管理名录》(环境保护部令第 33 号,2015 年 6 月 1 日起施行)及《广东省建设项目环境保护管理条例》(2012 年 7 月 26 日广东省第十一届人民代表大会第三十五次会议修正)中的有关规定,本项目应执行环境影响评价制度,编制环境影响评价报告表送汕尾市环境保护局审批。受建设方委托,重庆浩力环境影响评价有限公司承担了该项目的环境影响评价工作,在建设方的协助下,通过现场调研、项目建设方案的讨论后,编制了项目环境影响报告表。

(二) 项目基本情况及主要经济技术指标

- 1)建设地点:项目位于汕尾市区和顺路西侧信利工业城 15 栋厂房内,本项目生产区建筑面积为 8000m²,经纬度坐标为:北纬 22 47'43.80",东经 115 23'15.85"。其东面为信利光电股份有限公司 16 号厂房、南面为信利电子办公楼,北侧为空地,西面为信利光电股份有限公司 31 号厂房。项目地理位置图见附图 1,项目四至情况示意图详见附图 2。
 - 2) 产品规模:

信利光电股份有限公司 15 厂房 2 楼汽车驾驶智能辅助系统建设项目生产规模为年产以太网摄像头模组 200 万个,倒车智能后视系统、360 度全景泊车影像系统、车道偏离报警系统、夜视辅助系统、自适应巡航控制、驾驶员疲劳监控系统共 30 万套。

- 3) 建设周期:建设期约为13个月,预计于2018年底投入生产运营。
- 4) 资金筹措:项目总投资 3.46 亿元,其中环保投资为 625 万元;建设资金 2.77 亿,铺底流动资金 0.69 亿。
- 5) 劳动定员: 拟定员工 605 人, 其中 450 人为两班生产线一线人员, 155 人为研发、管理和配套工作人员。
 - 6) 工作制度:每天2班,每班工作8小时,年工作300天。

(三) 建设内容

本项目工程组成一览表见表 1-1。本项目位于广东省汕尾市城区东城路信利工业城 15 号厂房 1 楼和 2 楼。根据可知,15 号厂房占地约 7074.02m²,为 2 层混凝土框架结构,厂房每层高均为 6m,建筑面积 14148.04m²。信利光电股份有限公司拟在该厂房 1 楼、2 楼部分面积用作项目生产厂房。

	农工工 次 日 工 任 组 从					
序 号	工程 名称	内容	建设规模	性质		
1	主体工程	汽车驾驶智能辅助 系统生产线	建筑面积 8000m², 一层为 1000m², 二层为 7000m², 为 5000 级净化区。其中在二层布置成品检测车间、分割与热压车间、绑定与镜头搭载车间、锡膏印刷和 PCB 清洗车间; 一层布置装配、点胶等其余工序。	依托		
		仓库	设有一个物料房,面积为 300m², 一个出货成品房, 面积为 300m²	依托		
2	储运 工程	化学品仓库	信利工业城现有化学品仓库占地 759m², 主要储存了各生产线需使用的丙酮、清洗剂、无水乙醇、醋酸乙酯、盐酸、硝酸等化学品,该仓库于 2012 年 1 月通过汕环函[2012]1 号环境保护竣工验收,本项目所需化学品物料由集团统一配送	依托		
		宿舍楼	信利工业城现有员工宿舍	依托		
3	3 辅助工程	办公楼	信利工业城员工现有办公楼办公	依托		
3		食堂	信利工业城现有员工食堂	依托		
		DI 水房	位于 15 号厂房第一层, 纯水制备能力 100 吨/小时	依托		

表 1-1 项目工程组成一览表

续上	.表				
序号	工程 名称	内容		建设规模	性质
	空压机		空压机	总耗气量 20m³/min 左右	依托
			空调主机	需冷量 800 冷吨左右	依托
	ΛШ	风淋室、物淋室、 风柜房		风柜 9 个,风淋室 1 套,物淋室 2 个,面积 96m²。 风淋室及物淋室用于清除物体及人体表面吸附的尘 埃,风柜房用于车间通风	依托
4	公用工程		供水	市政供水管网供给	依托
	上作	配	变压器	1台,250KVA,10KV/0.4KV,市政供电	依托
		电	高压配电柜	1 套	依托
	房低压酉		低压配电柜	1套	依托
			消防工程	设置完整的火灾报警及灭火系统, 洁净室设车间安全 门及安全疏散通道和防排烟系统, 市政管网供消防水	依托
	废气处理系统		受气处理系统	1 套有机废气活性碳吸附装置,21 米高空排放,内径为0.6m;1 根回流焊废气排气筒,高21 米,内径为0.5m	新建
				三级化粪池,混凝土结构	依托
	环保	废水处理系统		1号综合污水处理站,处理水量为2700m³/d,综合废水处理规模为2500m³/d,含氟废水处理规模为200m³/d	依托
5	工程	妈	桑声治理措施	隔声、消声、减震等	新建
			一般固体废物临时 存放点 设于 15 号厂房第一层内		依托
		一彤	设固体废物暂存 场所	依托 15 号厂房一层现有的一般固体废物暂存场所	依托
		危	危险废物仓库	依托 22 号厂房一层现有的危险废物仓库	依托
		 X	风险处理设施	消防废水池,信利工业城现有消防废水池	依托

(四)产品规模

项目建成投产后,主要生产以太网摄像头模组及倒车智能后视系统、360 度全景泊车影像系统、车道偏离报警系统、夜视辅助系统、自适应巡航控制、驾驶员疲劳监控系统。生产的主要产品规模如表 1-2。

表 1-2 主要产品规模一览表

产品名称	单位	产量
以太网摄像头模组	万个/a	200
倒车智能后视系统、360度全景泊车影像系统、车道偏离报警系统、 夜视辅助系统、自适应巡航控制、驾驶员疲劳监控系统	万套/a	30
总计	万套(个)/a	230

(五) 主要原辅材料

根据建设单位提供资料,项目产品涉及的主要原材料包括 PCB/FPC、电容电阻、感光 sensor、镜头 LENS、外壳 HOLDER 等,辅助材料为胶水、保护膜、无水乙醇、点胶针头等,各种原材料在国内供应稳定。

本项目生产、办公水源采用市政自来水。目前汕尾市自来水公司供水管网已铺至项目北边界,本项目供水由北边界工业大道供水管网中接入。供水管网引入一条 DN200 给水管,经水表计量后供项目消防、生产、办公用水。本项目供电有市政电网供电,并设计一座变配电站。

项目主要原辅材料消耗与能源消耗详见下表情况见表 1-3 和表 1-4。

表 1-3 主要原辅材料一览

	农工5 工文次间的 2	
序号	料品名称	年用量
1	PCB/FPC(印刷电路板/软性线路板)	22.08 万片
2	ECU(电子控制单元)主板	2.88 万片
3	电容电阻	2070 万粒
4	感光 sensor(感光芯片)	9.66 万颗
5	连接器	33.12 万个
6	主控芯片	2.208 万颗
7	胶水	0.0552 吨
8	线束	9.66 万条
9	镜头	8.28 万颗
10	外壳	16.56 万颗
11	螺丝	60.72 万颗
12	二极管	33.12 万颗
13	LDO 稳压器(低压差线性稳压器)	24.84 万颗
14	锡膏	0.215 吨
15	清洗剂	20.7m ³
16	无水乙醇	5.52m ³ /4.36t
17	钢网擦拭纸	2.139km
18	钢网保护膜	0.229km
19	棉签	5.52 万支
20	点胶针头	13.8 万支

表 1-4 主要能源消耗表				
序号	名称	年用量	来源	
1	水	128415t/a	汕尾市政给排水管网	
2	电	450万 kwh/a	汕尾市政电网	

(六) 主要生产设备

本项目主要生产设备情况详见下表:

表 1-5 主要生产设备一览表

序号	设备名称	数量台/套	用途
1	锡膏印刷机	4	用于锡膏印刷工序
2	参数自动烧录机	2	用于固件烧录
3	高速贴片机	4	用于 SEM 贴片工序
4	上料机	8	用于对回流炉进料
5	回流炉	2	用于回流焊
6		4	检查工序
	3D-SPI(三维锡膏厚度检查机)		,
7	AOI(自动光学检测)检查机	4	镜头搭载、调焦工序
8	超声波清洗机	1	清洗工序
9	组装自动流水线	4	用于装线工序
10	自动锁螺丝机	4	用于总装工序
11	工具显微镜	2	检查工序
12	高温烘烤机	3	国化子序
13	超声波热熔机	2	固化工序
14	自动激光打标分粒机	2	切割分粒及打标
15	自动对位机	4	锁螺工序
16	自动功能检测机	4	用于功能测试工序
17	自动点胶机	8	用于点胶工序
18	防水测试机	4	用于测试工序
19	自动贴膜机	3	田工石壮工序
20	自动包装机	2	用于包装工序
21	其他设备、仪器、工装治具等	1	
22	合计	72	

(七)产业政策符合性

(1) 与国家产业政策符合性

根据中华人民共和国国家发展和改革委员会 2011 年第 9 号令《产业结构调整指导目录(2011 年本,2013 年修正)》,本项目属于"鼓励类"中第十六"汽车"中汽车电子

控制系统: 发动机控制系统(ECU)、变速箱控制系统(TCU)、制动防抱死系统(ABS)、牵引力控制(ASR)、电子稳定控制(ESP)、网络总线控制、车载故障诊断仪(OBD)、电控智能悬架、电子驻车系统、自动避撞系统、电子油门等项目,同时属于第二十八项"信息产业"中的新型电子元器件(片式元器件、频率元器件、混合集成电路、电力电子器件、光电子器件、敏感元器件及传感器、新型机电元件、高密度印刷电路板和柔性电路板等)制造的项目。

国家发展和改革委员会和商务部于 2017 年 6 月 28 日公布的《外商投资产业指导目录(2017 年修订)》中鼓励外商投资的产业中第二十二项: 计算机、通信和其他电子设备制造业的第 255 条指出,鼓励"新型电子元器件制造: 片式元器件、敏感元器件及传感器、频率控制与选择元件、混合集成电路、电力电子器件、光电子器件、新型机电元件、高分子固体电容器、超级电容器、无源集成元件、高密度互连积层板、多层挠性板、刚挠印刷电路板及封装载板",符合国家产业政策。

(2) 与广东省产业政策符合性

本项目属于《广东省主体功能区产业发展指导目录(2014年本)》(粤发改产业[2014]210号)鼓励类中的信息产业类中的新型电子元器件(片式元器件、频率元器件、混合集成电路、电力电子器件、光电子器件、敏感元器件及传感器、新型机电元件、高密度印刷电路板和柔性电路板等)制造,符合广东产业政策。

为了优化广东省产业结构和布局,促进珠三角区域整体经济协调全面发展,广东省在提出产业和劳动力"双转移"的指导思想后,制定了《广东省产业转移区域布局指导意见》。《指导意见》规定了鼓励珠三角向东西两翼和粤北山区转移的产业,并根据各地区不同社会环境条件进行区域分工,实现产业互补优化发展。其中粤东地区主要承接纺织服装、电子工艺品、制鞋、玩具、陶瓷、石油化工、电力、装备制造、电子信息、港口物流、皮革、医药、食品饮料、生物产业、五金不锈钢等产业。信利工业城处于粤东地区的汕尾市,承接主要来自珠三角的电子电路信息产业,符合《广东省产业转移区域布局指导意见》。

(3) 与《广东省环境保护规划纲要(2006-2020年)》相符性

根据《广东省环境保护规划纲要(2006-2020年)》,本项目属于陆域生态分级控制的集约利用区,不属于生态严控区。

(九) 与本项目有关的原有污染情况及主要环境问题

本项目的建设位于汕尾市区和顺路北段西侧信利工业城范围内,项目周边主要为信
利集团现有的生产车间为主,其各生产车间的环保手续齐全,生产过程中产生的废水、
废气皆能够得到有效的控制。根据现场调查及相关资料查阅,项目评价范围无自然保护
区、风景名胜区、生态功能保护区、基本农田保护区。

二、建设项目所在地自然环境概况和功能区划

(一) 自然环境简况(地形、地貌、地质、气候、气象、水文等)

(1) 地理位置

汕尾市位于广东省东南沿海,在北纬 20.27 °—23.28 °和东经 114.54 °—116.13 °之间。东邻揭阳市,同惠来县交界;西连惠州市,与惠东县接壤;北接河源市,和紫金县相连;南濒南海,与香港隔海相望。陆域界线南北最宽处 90km,东西最宽处 132km,总面积 5271km²,(不含东沙群岛 1.8km²)占全省总面积 2.93%。大陆岸线长 302km,占全省岸线长度 9%。项目位于汕尾市区和顺路西侧信利工业城内,所在地理位置见附图 1。

(2) 地形地貌地质

汕尾市背山面海,由于历次地壳运动褶皱、断裂和火山岩隆起的影响,造成境内山地、台地、丘陵、平原、河流、滩涂和海洋各种地形类兼有的复杂地貌。本地区位于莲花山南麓,其山脉走势为东北向西南倾斜。莲花山脉由闽粤边界的铜鼓岭向东南经汕尾跨惠阳到香港附近入海。地形为北部高丘山地,山峦重叠,千米以上的高山有23座,最高峰为莲花山,海拔1337.3米,位于海丰县西北境内;中部多丘陵、台地;南部沿海多为台地、平原。全市境内山地、丘陵面积比例大,约占总面积的43.7%。

本地区地层、岩浆出露情况较好,中东部平原区大部分为燕山期岩浆岩(包括火山岩)和第四系覆盖。出露地层较简单,以中生代地层为主,且仅见晚三叠统大顶(小坪)组、下侏罗统金鸡组和上侏罗统高基坪群。地层普遍受不同区域动力变质作用具有片理化。岩石主要有花岗岩、砂页岩及第四系冲积砂砾层等组成。经过大自然和人类活动的作用,构成复杂的土壤类型。

在区域地质上,该场地位于燕山三期花岗岩汕尾岩体的南东部,场地及附近的基底岩石都是中粗粒黑云母花岗岩,局部有后期细粒花岗岩脉、中性岩脉侵入,未见有明显的断裂构造和其他不良地质现象,属比较稳定的区域。本区位于区域基本地震烈度VII度范围

(3) 气象气候

汕尾市属于亚热带海洋性气候, 年平均风速 2.6m/s, 主导风向为 ENE 风, 历年平

均气温 21.10℃,极端最高气温 38.50℃,极端最低气温-0.10℃; 月平均最高气温 31.70℃, 月平均最低气温 19.10℃, 年平均相对温度 80%, 平均降雨量为 2200mm, 最高日降雨量 475.7mm, 年平均降雨量 1029.6mm; 全市境内太阳辐射总量年平均 120 千卡/cm2 以上, 光合潜力每 1/15ha 约 7400kg, 年平均日照量 2179h, 日照率 49%。

全市雨量充沛,属湿润地区。境内雨季始于 3 月下旬,终于 10 月中旬;常年雨量集中在 4~9 月的汛期,降雨量占全年 80%以上;而自 10 月起至翌年 3 月,雨量度稀少,降雨仅占全年的 15~20%,故春旱、夏涝是汕尾水旱灾害的一般规律。据统计,汕尾市多年年平均暴雨日数 12 天,最多达 23 天。由于地形作用降雨量集中,使本市成为广东省暴雨中心之一,曾有过日降雨量 621.6mm 和一次连续性最大降雨 1191.5mm 的记录。此外,由于汕尾背山面海,岸线较长,故夏秋季节较易受西太平洋和南海热带气旋(台风)的袭击及影响。资料显示,影响汕尾气候的热带气旋年平均 4.7 个,最多年份 10 个,气旋带来的狂风、暴雨和海潮,往往酿成风、涝、潮灾害,但其丰沛降水亦可缓和干旱,增加工厂水库蓄水,为次年的早稻等农作物生产储备丰富的水源。2) 降水境内雨量充沛,多年年平均降雨量为 1900~2500 毫米,最多年的年雨量可达 3728 毫米。雨热同季是汕尾市气候特点之一,雨季始于 3 月下旬到 4 月上旬,终于 10 月中旬;每年 4~9 月的汛期,既是一年之中热量最多的季节,又是降雨量最集中的季节,占全年总降雨量 85%左右。

(4) 水文概况

全市境内集雨面积 100 平方公里以上的河流有螺河、螺溪、南北溪、新田水、乌坎河、长山河、水东河、龙潭河、鳌江、赤石河、明热河、黄江、西坑水、吊贡水、大液河等 15 条,其中直流入海的有螺河、乌坎河、鳌江、黄江、赤石河等 5 条。螺河和黄江是汕尾市两大河流。螺河发源于莲花山脉三神凸东坡,自北向南纵贯陆河、陆丰两地,流域面积 1356 平方公里(本市境内 1321 平方公里),全长 102 公里,于海陆丰交界处的烟港汇入南海碣石湾。黄江发源于莲花山脉上的腊烛山,流经海丰 16 个乡镇场,流域面积 1370 平方公里(本市境内 1357 平方公里),河长 67 公里,年均径流量 19.35 亿立方米,在马宫盐屿注入红海湾。

(5) 植被

汕尾市内的土壤类型包括水稻土、南方山地草甸土、黄壤、红壤、赤红壤、菜园

土、潮沙泥土、滨海盐渍沼渍土、海滨沙土、石质土等 10 多种土类, 40 多个土属, 70 多个土种。

境内木本植物有 39 科 115 种,常见的乔木有杉、松、桉、红椎林、稠、荷木、木麻黄、台湾相思、大叶相思、樟、柳、苦楝、油桐、橡胶等。灌木品种主要有桃金娘、野脚木等。人工栽培品种有马尾松、台湾相思、速成桉、茶、楝叶五茱萸等。

农作物主要分为粮食作物和经济作物。粮食作物以水稻、番薯为主,其他还有马 铃薯、玉米等旱粮作物;经济作物有蔬菜、果树、花生、甘蔗、大豆、木薯、茶叶、 花卉、南药、食用菌等。

(二)建设项目环境功能区区划分类表

项目选址所在区域环境功能属性见表 2-1:

表 2-1 建设项目所在区域环境功能属性一览表

编号	项目	区划情况			
1	地表水环境功能区划	根据《广东省近岸海域功能区划》(粤府办[1999]68号)和《汕尾市环境保护规划纲要(2008—2020年)》(汕府(2010)62号)可知,品清湖为二类海域,执行《海水水质标准》(GB3097-1997)			
		第二类标准			
2	地下水环境功能区划	根据《广东省地下水功能区划》(粤水资源[2009]19号),项目所在的地下水功能区属于韩江及粤东诸河汕尾沿海地质灾害易发区,执行《地下水质量标准》(GB/T14848-93)中的III类标准			
3	环境空气质量功能区	根据《汕尾市环境保护规划纲要(2008—2020年)》可知,项目所在区域属于汕尾市环境空气质量功能区的二类区,执行《环境空气质量标准》(GB3095-2012)中的二级标准			
4	声环境功能区	根据《汕尾市环境保护规划纲要(2008—2020年)》,项目所在 区域声为噪声控制 3 类区,声环境执行《声环境质量标准》 (GB3096-2008) 3 类标准			
5	生态功能区划	根据《汕尾市城市总体规划(2012—2020 年)》,属于城市经济生态区。根据《广东省环境保护规划纲要(2006-2020 年)》,属于陆域生态分级控制的集约利用区,不属于生态严控区。			
6	是否基本农田保护区	否			
7	是否风景名胜区	否			
8	是否自然保护区	否			
9	是否属于城镇污水处 理厂集污范围	是,汕尾市东区污水处理厂集污范围			
10	是否环境敏感区	否			

(三)主要环境保护目标(列出名单及保护级别):

根据本项目所处地理位置,以评价范围内的主要环境敏感点为本项目环境保护目标,具体见表 2-2 和附图 3。

表 2-2 项目环境敏感点

序号	行政区域	敏感点	距离(米)	相对方位	保护目标
1.	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	林伟华小学	910	SSW	N1.4 13.
2.		新林社区	490	S	
3.		香洲社区	2000	SW	
4.		香洲学校	1630	SW	
5.	园山龙岩	港湾1号	870	WSW	
6.	凤山街道	春蕾幼儿园	890	WSW	
7.		崇文中等职业技术学校	1640	W	
8.		田家炳中学	1650	SW	上层开拉一
9.		汕尾市广播电视大学	1985	WSW	大气环境二 类区、环境风
10.		奎山社区	2695	WSW	()
11.		东兴社区	2150	WSW	<u> </u>
12.		汕尾市儿童福利院	1180	WN	
13.	香洲街道	汕尾市技工学校	1015	WWN	
14.	日加肉也	汕尾市气象局	915	W	
15.		汕尾市公安局交通警察支 队车辆管理所	330	N	
16.	东涌镇	东涌镇	700	E	
17.	不用块	汕尾市碧桂园	780	SE	
18.	汕尾市	品清湖	/	/	第二类海水 水质

三、环境质量状况

(一) 环境空气质量现状

项目位于汕尾市区,本项目环境空气监测数据引用《4.5 代车载电容屏建设项目环境影响报告书》中 2015 年 4 月 15 日至 21 日对 SO₂、NO₂、NO₈、PM₁₀、氟化物、TVOC 的监测数据,其中 TVOC 引用广东中科检测技术有限公司的监测数据,其余监测因子引用汕尾市环境保护监测站的监测数据。同时,引用广东德群检测技术有限公司于 2016 年 12 月 19 日~12 月 25 日对评价范围对新地村、信利员工宿舍和香洲社区东北侧对 PM_{2.5} 进行补充监测,具体如下。引用监测报告详见附件 1。

(1) 监测点位及监测项目

2015 年 4 月 15 日至 21 日的监测点位及监测项目见表 3-1, 2016 年 12 月 19 日~12 月 25 日的监测点位及监测项目见表 3-2。

编号	监测点位	与本项目的相对位置关系	监测项目
G1	新地村	ESE	
G2	新圩	ESE	常规监测指标: SO ₂ 、NO ₂ 、
G3	港湾 1 号	SSW	PM ₁₀ 、NOx 共 4 项
G4	新林社区	SSE	特征监测指标:氟化物、TVOC
G5	汕尾市政府	WSW	共2项
G6	崇文中等职业技术学校	W	
Q1	新地村居委会门口	ESE	
Q2	信利员工宿舍门口	SSW	PM2.5
Q3	香洲社区东北侧	SW	

表 3-1 监测点位及监测项目一览表

(2) 监测频率

- ①小时样: SO_2 、 NO_x 、氟化物小时样平均浓度每天采样四次,时间分别为 02:00 时、08:00 时、14:00 时和 20:00 时,连续采样 45 分钟,连续监测 7 天。
- ②24 小时均样: SO_2 、 NO_2 、 NO_x 、 PM_{10} 、 $PM_{2.5}$ 、氟化物 24 小时平均浓度每天采样一次,连续采样 20 小时,连续监测 7 天。
 - ③8 小时样: TVOC 监测日最大 8 小时浓度, 连续监测 7 天。

本项目环境空气监测点位见图 3-1。

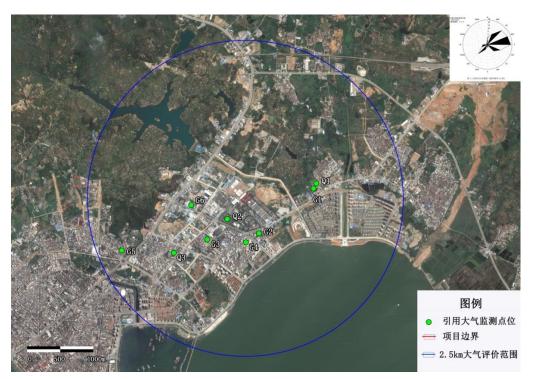


图 3-1 环境空气监测点位

(3) 监测及分析方法

监测方法按照《环境空气质量监测规范》及各监测项目的有关规范、标准进行采样、分析,具体的检测方法、最低检出限见表 3-2。

表 3-2 大气监测及分析方法	(单位:	mg/m3)
-----------------	------	--------

序号	项目名称	监测方法	使用仪器	检出限
1	二氧化硫(SO ₂)	环境空气 二氧化硫的测定 甲醛吸收-副玫瑰苯胺分光光度法 HJ482-2009	应用 2020 型空气采样器、S22PC 型可见分光光度计	0.007
2	二氧化氮 (NO ₂ /NOx)	环境空气 氮氧化物(一氧化氮和二氧化氮)的测定 盐酸萘乙二胺分光光度法 HJ479-2009	应用 2020 型空气采样器、S22PC 型可见分光光度计	0.005
3	可吸入颗粒物 (PM ₁₀ 、PM _{2.5})	重量法 《空气和废气监测分析方法》(第四版)国家环境保护总局2003年	应用 2030 型 TSP 采样器, HM-200 型电子天平	0.001
4	TVOC	热解吸/毛细管气相色谱法 GB/T18883-2002 附录 C	GC112A 气相色谱仪	0.0005
5	氟化物	氟离子选择电极法 HJ480-2009	PXS-270 离子计	0.0009

(4) 评价标准

项目所在区域为环境空气二类区,执行《环境空气质量标准》(GB3095-2012)二级标准、氟化物执行《环境空气质量标准》(GB3095-2012)附录 A 中表 A1 的二级标准、TVOC 参照执行《室内空气质量标准》(GB18883-2002)表 1 标准值,详见表 3-3。

二级标准 单位 选用标准 项目 取值时间 24 小时平均 150 SO_2 1 小时平均 500 24 小时平均 80 NO_2 1 小时平均 200 24 小时平均 100 $\mu g/m^3$ 《环境空气质量标准》(GB3095-2012)二级标准 **NO**x 1 小时平均 250 24 小时平均 PM_{10} 150 24 小时平均 75 $PM_{2.5}$ 24 小时平均 7 氟化物 1 小时平均 20 **TVOC** 8 小时均值 0.60 mg/m^3 《室内空气质量标准》(GB18883-2002)

表 3-3 环境空气质量评价执行标准

(5) 监测结果

G6

均值

环境空气质量所引用的常规指标监测结果见表 3-4。特征污染物监测指标 TVOC 和氟化物的监测统计结果见表 3-5。

	V V+		1小	时平均浓度	度	24小时平均浓度			
	污染 物	监测点	浓度范围	超标率 (%)	最大值占标 率(%)	浓度范围	超标率 (%)	最大值占标率(%)	
		G1	0.007~0.011	0	2.2	0.009~0.010	0	6.7	
		G2	0.008~0.012	0	2.4	0.008~0.011	0	7.3	
		G3	0.007~0.010	0	2	0.008~0.010	0	6.7	
	SO_2	G4	0.008~0.010	0	2	0.009~0.010	0	6.7	
		G5	0.007~0.011	0	2.2	0.009~0.010	0	6.7	

2.4

0.011~0.012

0.01

表 3-4 引用大气环境监测指标统计结果及分析一览表 (单位: mg/m³)

0.008~0.012

0.009

续上表

		1/	小时平均浓		24小	时平均浓质	 度
污染物	监测点	みた世田	超标率	最大值占标	お皮井田	超标率	最大值占
		浓度范围	(%)	率(%)	浓度范围	(%)	标率(%)
	G1	0.009~0.021	0	10.5	0.012~0.015	0	18.75
	G2	0.009~0.020	0	10	0.012~0.015	0	18.75
	G3	0.011~0.023	0	11.5	0.013~0.016	0	20
NO_2	G4	0.009~0.020	0	10	0.013~0.016	0	20
	G5	0.011~0.020	0	10	0.010~0.014	0	17.5
	G6	0.010~0.021	0	10.5	0.012~0.015	0	18.75
	均值	0.015			0.013		
	G1	0.010~0.022	0	8.8	0.014~0.017	0	17
	G2	0.009~0.024	0	9.6	0.013~0.019	0	19
	G3	0.011~0.023	0	9.2	0.014~0.018	0	18
NOx	G4	0.010~0.023	0	9.2	0.014~0.018	0	18
	G5	0.012~0.021	0	8.4	0.013~0.016	0	16
	G6	0.011~0.023	0	9.2	0.013~0.015	0	15
	均值	0.016			0.015		
	G1			_	0.023~0.033	0	22
	G2	_	_	_	0.022~0.030	0	20
	G3	_		_	0.026~0.030	0	20
PM_{10}	G4				0.024~0.031	0	20.7
	G5	_		_	0.025~0.029	0	19.3
	G6	_		_	0.022~0.031	0	20.7
	均值	_	_	_	0.027		
	Q1	_		_	0.044~0.060	0	80
PM _{2.5}	Q2	_	_	_	0.042~0.055	0	73
	Q3	_		_	0.047~0.066	0	88

表 3-5 特征污染物监测指标统计结果及分析 (单位 mg/m³)

污染物	监测点	8 小时平均					
行架彻	鱼侧总	浓度范围	超标率(%)	最大浓度占标率(%)			
	G1	0.047~0.058	0	9.7			
	G2	0.049~0.055	0	9.2			
	G3	0.048~0.061	0	10.2			
TVOC	G4	0.051~0.069	0	11.5			
	G5	0.053~0.068	0	11.3			
	G6	0.057~0.075	0	12.5			
	均值	0.06					

续上表

-71							
污染物	11大公司 上	8 小时平均					
15条初	监测点	浓度范围	超标率(%)	最大浓度占标率(%)			
	G1	0.9L					
	G2	0.9L					
复化 伽	G3	0.9L					
氟化物 (μg/m³)	G4	0.9L					
(μg/m)	G5	0.9L					
	G6	0.9L					
	均值	0.45					

监测结果表明:

- ①SO₂的小时平均浓度为 7~12μg/m³,最大浓度出现在 G6 崇文中等职业技术学校,最大浓度占标率为 2.4%,区域 1 小时平均浓度均值为 9.25μg/m³; 24 小时平均浓度为 8~12 μg/m³,最大浓度出现在 G6 崇文中等职业技术学校,最大浓度占标率为 8%,区域 24 小时平均浓度均值为 9.75μg/m³。评价区域 6 个监测点的 SO₂监测浓度均满足《环境空气质量标准》(GB3095-2012)二级标准要求。
- ②NO₂的小时平均浓度为 9~23 mg/m³,最大浓度出现在 G3 港湾 1 号,最大浓度占标率为 11.5%,区域 1 小时平均浓度均值为 15.33μg/m³; 日均浓度范围为 10~16 μg/m³,最大浓度出现在 G3 港湾 1 号和 G4 新林社区,最大浓度占标率为 20%,区域 24 小时平均浓度均值为 13.58μg/m³。评价区域 6 个监测点的 NO₂ 监测浓度均能满足《环境空气质量标准》(GB3095-2012)二级标准要求。
- ③NOx的小时平均浓度为 9~24 μg/m³,最大浓度出现在 G2 新圩,最大浓度占标率为 9.6%,区域 1 小时平均浓度均值为 16.75μg/m³;日均浓度范围为 13~19 μg/m³,最大浓度出现在 G2 新圩,最大浓度占标率为 19%,区域 24 小时平均浓度均值为 15.42 μg/m³。评价区域 6 个监测点的 NOx 监测浓度均能满足《环境空气质量标准》(GB3095-2012)二级标准要求。
- ④PM₁₀的日均浓度范围为 22~33 μg/m³,最大浓度出现在 G4 新林社区,最大浓度占标率为 22%, 区域 24 小时平均浓度均值为 27.33 μg/m³。评价区域 6 个监测点的 PM₁₀的监测浓度均能满足《环境空气质量标准》(GB3095-2012)二级标准要求。
- ⑤PM_{2.5}的日均浓度范围为 0.042~0.066 mg/m³,最大浓度占标率为 88%。评价区域的 3 个监测点的 PM_{2.5}的监测浓度均能满足《环境空气质量标准》(GB3095-2012)二级标准要求。
- ⑥TVOC 的 8 小时均值浓度范围为 0.047~0.075 mg/m³,最大浓度出现在 G6 崇文中等职业技术学校,最大浓度占标率为 12.5%,区域 8 小时均值浓度均值为 0.06mg/m³。评价区域 6 个监测点的

TVOC 监测浓度均能满足《室内空气质量标准》(GB/T18883-2002)标准要求。

⑦氟化物的 1 小时平均浓度、24 小时平均浓度均低于检出限 0.9μg/m³。评价区域的 6 个监测点的氟化物监测浓度均能满足《环境空气质量标准》(GB3095-2012)附录 A 中环境空气氟化物参考浓度限值的二级标准要求。

综上分析,评价区环境空气质量的现状评价如下:

- (1) SO₂、NO₂、NO_x、PM₁₀、PM_{2.5}、氟化物的监测结果满足《环境空气质量标准》(GB3095-2012) 二级标准要求。
- (2)特征监测指标 TVOC 的监测结果满足《室内空气质量标准》(GB18883-2002) 8 小时均值浓度标准要求。监测结果表明项目所在区域环境空气质量现状良好。

(二)海水环境质量现状

海水环境质量现状评价引用《4.5 代车载电容屏建设项目环境影响报告书》中现状监测数据和结果。

(1) 监测点点位及监测项目

根据技术规范的要求并结合区域的实际情况,在汕尾市东区污水处理厂排污口附近海域总共布设 3 个地表水环境监测点位。监测点布设情况见表 3-6 和图 3-2。

编号	监测点名称	经纬度	监测项目				
W1 监测点	东区污水处理厂排污口	N22 47'18.5",	水温、pH 值、溶解氧(DO)、化学需				
WI血例点	100m 处	E115 °24'59.2"	氧量(COD)、五日生化需氧量				
W2 监测点	东区污水处理厂排污口	N22 47'29.3",	(BOD₅)、无机氮、活性磷酸盐、阴				
WZ血侧点	300m 处	E115 °24'59.3"	离子表面活性剂、悬浮物、石油类、				
W3 监测点	东区污水处理厂排污口	N22 47'50.5",	铅、汞、镉、氟化物、六价铬、镍共				
Wo血侧点	800m 处	E115 °24'59.3"	16 项。				

表 3-6 品清湖监测点布设和监测项目情况

图 3-2 品清湖海水水质监测点位

(2) 监测时间和频率

品清湖在小潮期和大潮期进行监测。小潮期监测时间为 2015 年 4 月 17 日至 19 日,连续监测 3 天,每天涨、退潮各监测 1 次。大潮期监测时间为 2015 年 4 月 27 日至 29 日,连续监测 3 天,每天涨、退潮各监测 1 次。

(3) 监测分析方法

各监测项目的分析方法按国家环保总局颁布的《海洋监测规范》规定的方法进行。如表 3-7 所示。

		7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7		
序号	监测项目	监测方法	检出限 (mg/L)	所使用关键仪器设备
1	水温	表层水温表法	/	SWL1-1 型表层水温表
2	pH 值	pH 计法	/	pH 计/PHSJ-3F型
3	溶解氧	碘量法	/	滴定管
4	化学需氧量	碱性高锰酸钾法	/	滴定管
5	五日生化需氧量	五日培养法	0.5	PYX-250S-A 型生化培养箱
6	氨氮	靛酚蓝分光光度法	/	S22PC 型可见分光光度计
7	硝酸盐氮	锌-镉还原法	/	S22PC 型可见分光光度计

表 3-7 水质分析方法

续上表

序号	监测项目	监测方法	检出限 (mg/L)	所使用关键仪器设备
8	亚硝酸盐氮	萘乙二胺分光光度法	/	S22PC 型可见分光光度计
9	铅	无火焰原子吸收分光光度 法	0.00003	PinAAcle 900T 火焰/石墨炉 原子吸收光度计
10	汞	原子荧光法	0.00004	AFS-920 型双道原子荧光分 光光度计
11	镉	无火焰原子吸收分光光度 法	0.00001	PinAAcle 900T 火焰/石墨炉 原子吸收光度计
12	阴离子表面活性 剂	亚甲基蓝分光光度法	/	S22PC 型可见分光光度计
13	悬浮物	重量法	/	HM-200 型电子天平
14	石油类	紫外分光光度法	/	Auguamate Plus 型紫外分光 光度计
15	活性磷酸 盐	磷钼蓝分光光度法	/	S22PC 型可见分光光度计
16	氟化物	离子选择电极法	0.05	PXS-270 离子计
17	六价铬	二苯碳酰二肼分光光度法	0.004	T6 新世纪紫外可见分光光 度计
18	镍	无火焰原子吸收分光光度 法	0.0005	TAS-990 原子吸收分光光度计

(4) 评价标准

根据有关功能区区划,品清湖执行《海水水质标准》(GB3097-1997)中的第二类水质标准。

表 3-8 海水水质标准

序号	项目	第二类标准
1	悬浮物质	人为增加的量≤10
2	水温(℃)	人为造成的海水温升夏季不超过当时当地 1℃,其它季节 不超过 2℃
3	pH 值(无量纲)	7.8~8.5 同时不超现出该海域正常变动范围的 0.2pH 单位
4	溶解氧 DO >	5
5	化学需氧量(COD) ≤	3
6	五日生化需氧量 $(BOD_5) \leq$	3
7	活性磷酸盐(以P计)≤	0.030
8	无机氮≤(以N计)	0.30
9	汞≤	0.0002

续上表

序号	项目	第二类标准
10	镉≤	0.005
11	铅≤	0.005
12	六价铬≤	0.010
13	阴离子表面活性剂(以LAS计)	0.10
14	石油类≤	0.05
15	镍	0.010

(5) 评价方法

采用《环境影响评价技术导则》(HJ/T2.3-93)所推荐的单项目水质参数评价法进行评价。

①一般评价因子的标准指数用下式计算:

$$S_{i,j} = C_{i,j} / C_{si}$$

式中: Ci.j 水质评价因子 i 在第 j 取样点的浓度, mg/L;

 C_{si} ——因子的评价标准,mg/L。

②对 DO 值

$$Si = \frac{\left|DO_f - DO_j\right|}{DO_f - DO_s}$$

$$DO_j \ge DO_s$$

$$S_i = 10 - 9\frac{DO_j}{DO_s}$$

$$DO_j < DO_s$$

$$DO_f = 468/(31.6 + T)$$

式中: S_{DO,j}—DO 标准指数;

DOf一饱和溶解氧;

DOj-DO 实测浓度值;

DO_s一标准浓度值;

T─水温℃。

③对 pH 值

$$Si = \frac{pH_j - 7.0}{pH_{su} - 7.0}$$
 pH>7.0

$$S_i = \frac{7.0 - pH_j}{7.0 - pH_{sd}}$$
 pH\leq 7.0

式中: Si----浓度指数;

pH_j-----pH 监测值;

pH_{sd}——pH 值标准下限;

pH_{su}——pH 值标准上限。

水质参数的标准指数>1,表明该水质参数超过了规定的水质标准,不能满足现状使用功能要求。

(6) 监测结果

引用海水水质现状监测评价结果见表 3-9,由监测结果可知,调查期间 W1、W2、W3 水质调查采样点的监测指标均满足《海水水质标准》(GB3097-1997)二类标准的要求,表明品清湖环境质量现状良好。

表 3-9 小潮期品清湖海水水质监测结果表 单位: mg/L(水温: ℃, pH 除外)

监测点位	采样日期	感潮	水温	pH 值	溶解氧	化学需氧量	BOD ₅	无机氮
	4月17日	涨潮	17.4	8.12	6.85	2.28	0.90	0.151
	4月17日	退潮	17.6	8.09	6.85	2.30	0.93	0.154
W71	4月18日	涨潮	17.5	8.14	6.85	2.33	0.94	0.151
W1	4月18日	退潮	17.9	8.15	6.82	2.37	0.96	0.152
	4 H 10 H	涨潮	17.2	8.18	6.88	2.38	0.92	0.149
	4月19日	退潮	17.5	8.14	6.85	2.43	0.90	0.158
	4月17日	涨潮	17.2	8.10	6.87	2.20	0.85	0.162
	4月17日	退潮	17.6	8.12	6.83	2.24	0.92	0.158
W2	4月18日	涨潮	17.5	8.14	6.80	2.24	0.90	0.161
W Z		退潮	17.4	8.12	6.85	2.28	0.91	0.158
	4月19日	涨潮	17.0	8.11	6.82	2.09	0.91	0.166
		退潮	17.2	8.15	6.87	2.13	0.88	0.16
	4月17日	涨潮	17.2	8.10	6.87	2.02	0.84	0.171
	4月17日	退潮	17.6	8.14	6.82	2.07	0.90	0.169
W3	4月18日	涨潮	17.2	8.14	6.87	2.10	0.87	0.173
W 3	4月18日	退潮	17.5	8.13	6.87	2.13	0.90	0.169
	4月19日	涨潮	17.2	8.12	6.89	2.01	0.88	0.173
	4月19日	退潮	17.2	8.12	6.82	2.05	0.87	0.17

续上表

X=K									
	监测点位	采样日期	感潮	氟化物	活性磷酸盐	悬浮物	石油类	铅	镍
=		4 日 17 日	涨潮	0.72	0.022	8.6	0.012	0.00071	0.0005L
	W 71	4月17日	退潮	0.84	0.025	8.7	0.009	0.00069	0.0005L
	W1	4月18日	涨潮	0.67	0.023	8.5	0.014	0.00070	0.0005L
			退潮	0.85	0.026	8.6	0.010	0.00069	0.0005L

4 H 10 H	涨潮	0.70	0.024	8.6	0.013	0.00065	0.0005L
4 /1 17 🖂	退潮	0.83	0.029	8.8	0.011	0.00062	0.0005L
4 H 17 □	涨潮	0.64	0.025	8.4	0.018	0.00068	0.0005L
4月17日	退潮	0.70	0.027	8.9	0.014	0.00065	0.0005L
4 H 10 H	涨潮	0.68	0.025	8.9	0.017	0.00069	0.0005L
4月16日	退潮	0.75	0.028	8.8	0.015	0.00064	0.0005L
4 H 10 H	涨潮	0.64	0.025	8.7	0.018	0.00064	0.0005L
4月19日	退潮	0.80	0.027	8.6	0.015	0.00063	0.0005L
4 H 17 H	涨潮	0.59	0.020	8.7	0.019	0.00066	0.0005L
4月17日	退潮	0.67	0.023	8.8	0.014	0.00065	0.0005L
4 ∃ 10 □	涨潮	0.62	0.022	8.6	0.020	0.00069	0.0005L
4月10日	退潮	0.70	0.025	8.7	0.013	0.00066	0.0005L
4 H 10 H	涨潮	0.54	0.023	8.8	0.020	0.00067	0.0005L
4 万 19 日	退潮	0.63	0.027	8.7	0.015	0.00063	0.0005L
	4月19日 4月17日 4月18日 4月19日 4月17日 4月18日 4月19日	4月19日 退潮 4月17日 涨潮 4月18日 涨潮 4月19日 涨潮 4月17日 退潮 4月18日 涨潮 4月18日 涨潮 4月19日 涨潮	4月19日 退潮 0.83 4月17日 退潮 0.64 退潮 0.70 4月18日 退潮 0.75 4月19日 涨潮 0.64 退潮 0.80 涨潮 0.59 退潮 0.67 4月18日 涨潮 0.62 退潮 0.70 ※潮 0.54	4月19日 退潮 0.83 0.029 4月17日 涨潮 0.64 0.025 4月18日 退潮 0.70 0.027 4月18日 退潮 0.75 0.028 4月19日 涨潮 0.64 0.025 4月17日 涨潮 0.59 0.020 退潮 0.67 0.023 4月18日 涨潮 0.62 0.022 退潮 0.70 0.025 4月19日 涨潮 0.54 0.023	4月19日 退潮 0.83 0.029 8.8 4月17日 涨潮 0.64 0.025 8.4 退潮 0.70 0.027 8.9 水潮 0.68 0.025 8.9 退潮 0.75 0.028 8.8 4月19日 涨潮 0.64 0.025 8.7 退潮 0.80 0.027 8.6 4月17日 涨潮 0.59 0.020 8.7 退潮 0.67 0.023 8.8 4月18日 涨潮 0.62 0.022 8.6 退潮 0.70 0.025 8.7 4月19日 涨潮 0.54 0.023 8.8	4月19日 退潮 0.83 0.029 8.8 0.011 4月17日 涨潮 0.64 0.025 8.4 0.018 退潮 0.70 0.027 8.9 0.014 4月18日 涨潮 0.68 0.025 8.9 0.017 退潮 0.75 0.028 8.8 0.015 4月19日 涨潮 0.64 0.025 8.7 0.018 4月17日 涨潮 0.59 0.020 8.7 0.019 退潮 0.67 0.023 8.8 0.014 4月18日 涨潮 0.62 0.022 8.6 0.020 退潮 0.70 0.025 8.7 0.013 4月19日 涨潮 0.54 0.023 8.8 0.020	4月19日 退潮 0.83 0.029 8.8 0.011 0.00062 4月17日 涨潮 0.64 0.025 8.4 0.018 0.00068 4月18日 退潮 0.70 0.027 8.9 0.014 0.00065 4月18日 涨潮 0.68 0.025 8.9 0.017 0.00069 退潮 0.75 0.028 8.8 0.015 0.00064 4月19日 涨潮 0.64 0.025 8.7 0.018 0.00064 退潮 0.80 0.027 8.6 0.015 0.00063 4月17日 涨潮 0.59 0.020 8.7 0.019 0.00066 退潮 0.67 0.023 8.8 0.014 0.00065 4月18日 涨潮 0.62 0.022 8.6 0.020 0.00069 退潮 0.70 0.025 8.7 0.013 0.00066 銀潮 0.54 0.023 8.8 0.020 0.00067

续上表

<u> </u>						
监测点位	采样日期	感潮	镉	汞	六价铬	阴离子表面活性剂
	4 日 17 日	涨潮	0.00031	0.00007	0.004L	0.06
	4月17日	退潮	0.00029	0.00006	0.004L	0.07
3371	4月18日	涨潮	0.00031	0.00005	0.004L	0.05
W1	4月18日	退潮	0.00029	0.00008	0.004L	0.06
	4 H 10 H	涨潮	0.00031	0.00007	0.004L	0.05
	4月19日	退潮	0.00030	0.00008	0.004L	0.07
	4月17日	涨潮	0.00032	0.00006	0.004L	0.05
		退潮	0.00032	0.00007	0.004L	0.06
WO	4月18日	涨潮	0.00029	0.00008	0.004L	0.06
W2		退潮	0.00031	0.00007	0.004L	0.06
	4月19日	涨潮	0.00029	0.00010	0.004L	0.06
	4月19日	退潮	0.00028	0.00007	0.004L	0.07
	4 日 17 日	涨潮	0.00033	0.00009	0.004L	0.06
	4月17日	退潮	0.00033	0.00008	0.004L	0.08
W/2	4 目 10 □	涨潮	0.00028	0.00009	0.004L	0.06
W3	4月18日	退潮	0.00031	0.00008	0.004L	0.07
	4 H 10 H	涨潮	0.00028	0.00011	0.004L	0.06
	4月19日	退潮	0.00027	0.00008	0.004L	0.08

注:未检出项目以其监测方法的最低检出限值报出,并在后面加注(L)。

表 3-10 大潮期品清湖海水水质监测结果表 单位: mg/L(水温: ℃, pH 除外)

							0 (_	
监测点	点位	采样日期	感潮	水温	pH 值	溶解氧	化学需氧量	BOD ₅	无机氮
	4 ∃ 27 □	涨潮	17.9	8.10	6.77	2.23	0.90	0.151	
W/1	W1 4月27日 4月28日	4月27日	退潮	18.5	8.11	6.79	2.25	0.92	0.155
W J		涨潮	18.9	8.04	6.84	2.32	0.91	0.152	
4月	4月28日	退潮	18.0	8.02	6.77	2.30	0.94	0.153	

W2 4月29日 <a href="https://www.new.new.new.new.new.new.new.new.new.</th><th>0.152
0.149
0.162
0.16
0.162
0.162
0.169
0.163
0.174
0.169
0.171</th></tr><tr><td>W2 4月27日 退潮 17.5 7.94 6.65 2.28 0.94 0.94 0.87 0.87 0.87 0.87 0.87 0.87 0.87 0.87 0.92 退潮 18.5 8.15 6.77 2.18 0.92 涨潮 18.7 8.05 6.90 2.17 0.89 0.92 4月29日 涨潮 17.8 7.95 6.81 2.19 0.84 0.94 退潮 17.9 7.91 6.72 2.16 0.91 0.91 0.92 北潮 18.1 8.07 6.92 2.15 0.88 0.92 北潮 18.5 8.10 6.84 2.11 0.91 0.91 北潮 18.0 8.05 6.81 2.17 0.93 0.92 北潮 18.0 8.05 6.81 2.17 0.93 0.92 北湖 18.0 8.05 6.81 2.17 0.93 0.92 北湖 18.2 7.95 6.83 2.10 0.85 0.92</td><td>0.162
0.16
0.162
0.162
0.169
0.163
0.174
0.169
0.171
0.171</td></tr><tr><td>W2 退潮 18.5 8.15 6.77 2.18 0.92 水潮 18.7 8.05 6.90 2.17 0.89 0 退潮 18.0 8.09 6.79 2.21 0.94 0 水潮 17.8 7.95 6.81 2.19 0.84 0 退潮 17.9 7.91 6.72 2.16 0.91 0 水潮 18.1 8.07 6.92 2.15 0.88 0 退潮 18.5 8.10 6.84 2.11 0.91 0 水潮 18.7 8.09 6.92 2.14 0.90 0 退潮 18.0 8.05 6.81 2.17 0.93 0 水潮 18.2 7.95 6.83 2.10 0.85 0</td><td>0.16
0.162
0.162
0.169
0.163
0.174
0.169
0.171
0.171</td></tr><tr><td>W2 退潮 18.5 8.15 6.77 2.18 0.92 水潮 18.7 8.05 6.90 2.17 0.89 0 退潮 18.0 8.09 6.79 2.21 0.94 0 水潮 17.8 7.95 6.81 2.19 0.84 0 退潮 17.9 7.91 6.72 2.16 0.91 0 退潮 18.1 8.07 6.92 2.15 0.88 0 退潮 18.5 8.10 6.84 2.11 0.91 0 水潮 18.7 8.09 6.92 2.14 0.90 0 退潮 18.0 8.05 6.81 2.17 0.93 0 4月29日 涨潮 18.2 7.95 6.83 2.10 0.85 0</td><td>0.162
0.162
0.169
0.163
0.174
0.169
0.171
0.171</td></tr><tr><td>W2 4月28日 退潮 18.0 8.09 6.79 2.21 0.94 0 4月29日 涨潮 17.8 7.95 6.81 2.19 0.84 0 退潮 17.9 7.91 6.72 2.16 0.91 0 水潮 18.1 8.07 6.92 2.15 0.88 0 退潮 18.5 8.10 6.84 2.11 0.91 0 水潮 18.7 8.09 6.92 2.14 0.90 0 退潮 18.0 8.05 6.81 2.17 0.93 0 4月29日 涨潮 18.2 7.95 6.83 2.10 0.85 0</td><td>0.162
0.169
0.163
0.174
0.169
0.171
0.171</td></tr><tr><td>W3 18.0 8.09 6.79 2.21 0.94 0 ※潮 17.8 7.95 6.81 2.19 0.84 0 退潮 17.9 7.91 6.72 2.16 0.91 0 ※潮 18.1 8.07 6.92 2.15 0.88 0 退潮 18.5 8.10 6.84 2.11 0.91 0 水潮 18.7 8.09 6.92 2.14 0.90 0 退潮 18.0 8.05 6.81 2.17 0.93 0 4月29日 ※潮 18.2 7.95 6.83 2.10 0.85 0</td><td>0.169
0.163
0.174
0.169
0.171
0.171</td></tr><tr><td>W3 17.9 7.91 6.72 2.16 0.91 0.91 W3 18.1 8.07 6.92 2.15 0.88 0.88 W3 18.5 8.10 6.84 2.11 0.91 0.91 W3 18.7 8.09 6.92 2.14 0.90 0.92 W3 18.0 8.05 6.81 2.17 0.93 0.93 W3 18.2 7.95 6.83 2.10 0.85 0.85</td><td>0.163
0.174
0.169
0.171
0.171</td></tr><tr><td>W3 17.9 7.91 6.72 2.16 0.91 0.91 ※潮 18.1 8.07 6.92 2.15 0.88 0.88 退潮 18.5 8.10 6.84 2.11 0.91 0.91 水潮 18.7 8.09 6.92 2.14 0.90 0.90 退潮 18.0 8.05 6.81 2.17 0.93 0.93 4月29日 ※潮 18.2 7.95 6.83 2.10 0.85 0.92</td><td>0.174
0.169
0.171
0.171</td></tr><tr><td>W3 4月27日 退潮 18.5 8.10 6.84 2.11 0.91 0.91 4月28日 涨潮 18.7 8.09 6.92 2.14 0.90 0.90 退潮 18.0 8.05 6.81 2.17 0.93 0.93 4月29日 涨潮 18.2 7.95 6.83 2.10 0.85 0.95</td><td>0.169
0.171
0.171</td></tr><tr><td>W3 18.5 8.10 6.84 2.11 0.91 0 ※潮 18.7 8.09 6.92 2.14 0.90 0 退潮 18.0 8.05 6.81 2.17 0.93 0 4月29日 涨潮 18.2 7.95 6.83 2.10 0.85 0</td><td>0.171
0.171</td></tr><tr><td>W3 4月28日 退潮 18.0 8.05 6.81 2.17 0.93 0 4月29日 涨潮 18.2 7.95 6.83 2.10 0.85 0</td><td>0.171</td></tr><tr><td>退潮 18.0 8.05 6.81 2.17 0.93 (
※潮 18.2 7.95 6.83 2.10 0.85 (</td><td></td></tr><tr><td></td><td></td></tr><tr><td>4月29日</td><td>0.173</td></tr><tr><td>退潮 17.9 7.91 6.75 2.13 0.90 0</td><td>0.169</td></tr><tr><td>续上表</td><td></td></tr><tr><td>监测点位 采样日期 感潮 氟化物 活性磷 阴离子表面 悬浮物 石油类 二</td><td>铅</td></tr><tr><td>型</td><td>νц</td></tr><tr><td>4月27日 <a href=" https:="" td="" www.news.news.news.news.news.news.news.n<=""><td>.00070</td>	.00070
退潮 0.73 0.024 0.08 8.7 0.010 0.	.00069
W1 4月28日 涨潮 0.61 0.023 0.06 8.6 0.014 0.	.00071
退潮 0.78 0.023 0.09 8.7 0.010 0.	.00069
4月29日 涨潮 0.60 0.023 0.06 8.7 0.016 0.	.00071
退潮 0.69 0.022 0.08 8.9 0.011 0.	.00070
4月27日 涨潮 0.57 0.026 0.05 8.5 0.018 0.	.00067
退潮 0.62 0.026 0.07 8.9 0.014 0.	.00065
W2 4月28日 涨潮 0.61 0.025 0.05 8.8 0.017 0.	.00068
退潮 0.68 0.025 0.08 8.8 0.013 0.	.00065
	.00063
退潮 0.66 0.024 0.07 8.8 0.015 0.	.00067
4 1 27	.00068
退潮 0.68 0.024 0.07 8.8 0.015 0.	.00066
W3 4 28	.00067
退潮 0.62 0.024 0.07 8.6 0.015 0.	.00066
1 4 H 29 H	.00064
退潮 0.65 0.024 0.07 8.6 00015 0.	.00063
续上表	
监测点位 采样日期 感潮 镉 汞 六价铬 镍	
4月27日 涨潮 0.00028 0.00007 0.004L 0.000	
退潮 0.00025 0.00008 0.004L 0.000)5L
4月28日 涨潮 0.00024 0.00007 0.004L 0.000	
退潮 0.00028 0.00011 0.004L 0.000)5L

		沿下岸田	0.00024	0.00000	0.0041	0.00051
	4月29日	涨潮	0.00024	0.00008	0.004L	0.0005L
	T) 2) [退潮	0.00026	0.00009	0.004L	0.0005L
	4月27日	涨潮	0.00028	0.00008	0.004L	0.0005L
	4月27日	退潮	0.00027	0.00005	0.004L	0.0005L
W2	4月28日	涨潮	0.00026	0.00009	0.004L	0.0005L
W Z	4月26日	退潮	0.00025	0.00008	0.004L	0.0005L
	4月29日	涨潮	0.00023	0.00007	0.004L	0.0005L
	4月29日	退潮	0.00027	0.00005	0.004L	0.0005L
	4月27日	涨潮	0.00027	0.00009	0.004L	0.0005L
	4月27日	退潮	0.00026	0.00007	0.004L	0.0005L
W3	4月28日	涨潮	0.00026	0.00008	0.004L	0.0005L
w 3	4月28日	退潮	0.00026	0.00007	0.004L	0.0005L
	4月29日	涨潮	0.00023	0.00009	0.004L	0.0005L
	4 万 29 日	退潮	0.00026	0.00007	0.004L	0.0005L

注:未检出项目以其监测方法的最低检出限值报出,并在后面加注(L)。

表 3-11 品清湖海水水质评价因子标准指数

监测点 位	感潮	项目	pH值	溶解氧	化学需氧 量	五日生化需	无机氮	活性磷酸 盐
,	Net a Neter	均值	8.08	6.82	2.30	0.91	0.151	0.023
W/1	涨潮	标准指数	0.54	0.59	0.77	0.30	0.50	0.77
W1	退潮	均值	8.08	6.79	2.32	0.93	0.153	0.025
	必例	标准指数	0.54	0.60	0.77	0.31	0.51	0.83
	涨潮	均值	8.07	6.85	2.18	0.88	0.165	0.025
W2	你們	标准指数	0.54	0.59	0.73	0.29	0.55	0.83
VV Z	退潮	均值	8.09	6.81	2.20	0.91	0.161	0.026
	赵彻	标准指数	0.55	0.62	0.73	0.30	0.54	0.87
	涨潮	均值	8.08	6.88	2.09	0.87	0.173	0.022
W3	们队件的	标准指数	0.54	0.58	0.70	0.29	0.58	0.73
VV 3	退潮	均值	8.08	6.82	2.11	0.90	0.169	0.025
	赵彻	标准指数	0.54	0.59	0.70	0.3	0.56	0.83

续上表

监测 点位	感潮	项目	阴离子表 面活性剂	悬浮物	石油类	铅	镉	汞
W1	涨	均值	0.06	8.6	0.014	0.00070	0.00028	0.00007
W I	潮	标准指数	0.6	0.86	0.28	0.14	0.056	0.035

	退	均值	0.08	8.7	0.010	0.00068	0.00028	0.00008
	潮	标准指数	0.8	0.87	0.20	0.14	0.056	0.04
	涨	均值	0.05	8.7	0.018	0.00067	0.00028	0.00008
W2	潮	标准指数	0.5	0.87	0.36	0.13	0.056	0.04
W Z	退	均值	0.07	8.8	0.014	0.00065	0.00028	0.00007
	潮	标准指数	0.7	0.88	0.28	0.13	0.056	0.035
	涨	均值	0.06	8.7	0.020	0.00067	0.00028	0.00009
W2	潮	标准指数	0.6	0.87	0.40	0.13	0.056	0.045
W3	退	均值	0.07	8.7	0.015	0.00065	0.00028	0.00008
	潮	标准指数	0.7	0.87	0.30	0.13	0.056	0.04

注: ①表中无机氮测定值为氨氮、硝酸盐氮和亚硝酸盐氮的总和;

(三) 地下水质量现状监测评价

本项目地下水环境监测数据引用《高端车载工控电容式触摸屏建设项目环境影响报告书》广东 德群检测技术有限公司于 2016 年 12 月 19 日本项目评价区域内的监测数据。引用监测报告详见附件 1。

(1) 本评价所引用的监测点位及监测项目

总共布设了6个监测点位,其中4个水质和水位共同监测点位,2个水位监测点,监测布点及监测项目情况如下表3-12。

		14 0 == TT(\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)	XIII.// XII
序号	监测点位	与本项目相对位置	监测项目
D1	汕尾市技工学校	W	水位、pH、氨氮、硝酸盐、亚硝酸盐、挥发性酚类、
D2	26 号厂房边界	SSW	阴离子合成洗涤剂、氯化物、砷、汞、铬(六价)、总
D3	32 号厂房边界	NW	硬度、铅、氟化物、镉、铁、铜、锰、溶解性总固体、
D4	新林社区北侧	SSE	高锰酸盐指数、硫酸盐、总大肠菌群(共22项)
D5	汕尾市交通安全教育学	NE	水位
D6	港湾1号西侧	SSW	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\

表 3-12 监测点位及监测项目一览表

②低于检出限的指标均不进行超标指数计算。

图 3-3 地下水环境质量现状监测布点图

(2) 监测频率及分析方法

1) 监测频率

2016年12月19日,监测1天,每天监测一次。

2) 监测分析方法

具体的水质监测分析方法见下表。

表 3-13 地下水水质项目监测分析方法

检测项目	检测方法	方法来源	使用仪器	最低检出限 (mg/L)
pH 值	便携式 pH 计法	《水和废水监测分析方 法》(第四版增补版)国 家环保总局 2002 年 3.1.6.2(B)	便携式 pH 计 F2-S	/
氨氮	水质氨氮的测定 纳氏试剂分光光度 法	НЈ 535-2009	紫外可见分光光度 计 TU-1900	0.025mg/L

续上表				
检测项目	检测方法	方法来源	使用仪器	最低检出限 (mg/L)
硝酸盐(以 N 计)	紫外分光光度法	GB/T 5750.5-2006(5.2)	紫外可见分光光 度计 TU-1900	0.2 mg/L
亚硝酸盐 氮	水质亚硝酸盐氮的测定 分光光度法	GB/T 7493-1987	紫外可见分光光 度计 TU-1900	0.001mg/L (30mm 比色皿)
挥发酚类 (以苯酚 计)	4-氨基安替吡啉三氯甲 烷萃 取分光光度法	GB/T 5750.4-2006(9.1)	紫外可见分光光 度计 TU-1900	0.0003mg/L
阴离子表 面活性剂	亚甲蓝分光光度法	GB/T 5750.4-2006(10.1)	紫外可见分光光 度计 TU-1900	0.05mg/L
氯化物	硝酸银容量法	GB/T 5750.5-2006(2.1)	滴定管	1.0mg/L
砷	水质汞、砷、硒、铋和 锑的测定 原子荧光法	НЈ 694-2014	原子荧光光谱仪 SK-2003AZ	0.3 μ g/L
汞	水质汞、砷、硒、铋和 锑的测定 原子荧光法	НЈ 694-2014	原子荧光光谱仪 SK-2003AZ	0.04μg/L
六价铬	水质六价铬的测定 二苯碳酰二肼分光光度 法	GB/T 7467-1987	紫外可见分光光 度计 TU-1900	0.004mg/L
总硬度	乙二胺四乙酸二钠滴定 法	GB/T 5750.4-2006(7.1)	滴定管	1.0mg/L
铅	水质铜、锌、铅、镉的 测 定原子吸收分光光度法 (螯合萃取法)	GB/T 7475-1987	原子吸收分光光 度计 AA-7003	0.01mg/L
氟化物	离子选择电极法	GB/T 5750.5-2006 (3.1)	离子计 PXS-270	0.2mg/L
镉	水质铜、锌、铅、镉的 测 定原子吸收分光光度法 (螯合萃取法)	GB/T 7475-1987	原子吸收分光光 度计 AA-7003	0.001mg/L
铁	水质铁、锰的测定 火焰原子吸收分光光度 法	GB/T 11911-1989	原子吸收分光光 度计 AA-7003	0.03 mg/L
铜	水质铜、锌、铅、镉的 测定原子吸收分光光度 法(螯合萃取法)	GB/T 7475-1987	原子吸收分光光 度计 AA-7003	0.001mg/L

续上表

<u> </u>					
检测项目	 检测方法	方法来源	使用仪器	最低检出限 (mg/L)	
锰	水质铁、锰的测定 火焰原子吸收分 光光度法	GB/T11911-1989	原子吸收分光光 度计 AA-7003	0.01mg/L	
游艇丛 10 11 14	称量法	GB/T	ME204E	/	
溶解性总固体		5750.4-2006(8.1)	电子天平	/	
高锰酸盐指数	酸性高锰酸钾滴	GB/T	/	0.05 mg/L	
同価敗益11数	定法	5750.7-2006(1.1)	/	0.03 mg/L	
硫酸盐	铬酸钡分光光度	GB/T 5750.5-2006	紫外可见分光光	5 ma ~ /I	
	法(热法)	(1.3)	度计 TU-1900	5 mg/L	
为	夕竺华亚洲	GBT	电热恒温培养箱	/	
总大肠菌群	多管发酵法	5750.12-2006(2.1)	HPX-9082MBE	/	

3) 评价标准及评价方法

●......评 价 标准

根据各调查水域的水体功能类别,本项目涉及的地下水环境执行《地下水质量标准》(GB/T14848-93)中的III类水质标准。

评价方法采用单项水质参数评价方法进行评价,其通用计算式为:

①一般标准指数法: 单项水质参数 i 在第 j 点的标准指数:

$$P_{i,j} = C_{i,j}/Csi$$

式中: P₄ 一第 i 个水质因子的标准指数, 无量纲;

 $C_{i,i}$ 一第 i 个水质因子的监测浓度值, mg/L;

 C_{si} 一第 i 个水质因子的标准浓度值, mg/L

②pH 标准指数计算式为:

$$P_{pH,j} = \frac{7.0 - pH}{7.0 - pH_{sd}}, \text{ pHj} \le 7.0,$$

$$P_{pH,j} = \frac{pH - 7.0}{pH_{su} - 7.0}, \quad \text{pHj} > 7.0$$

式中: P----pH 的标准指数, 无量纲;

pH-pH 监测值;

pHsd一评价标准中规定的 pH 值下限;

pH_{su}一评价标准中规定的 pH 值上限。

4) 监测统计结果及分析

监测数据见表 3-14, 监测结果统计评价分析结果见表 3-15。

表 3-14 地下水水质水位监测数据结果一览表

引用的监测结果								
序号	监测因子		ı			ı	1	单位
, , ,		D1	D2	D3	D4	D5	D6	
1	水位	7.3	6.4	8.1	6	6.4	5.5	m
2	pH 值	7	6.96	6.81	6.8	_	_	无量纲
3	氨氮	0.784	0.792	0.781	0.794	_	_	mg/L
4	硝酸盐	1	0.9	1	1		_	mg/L
5	亚硝酸盐	ND	ND	ND	ND	_	_	mg/L
6	挥发酚	ND	ND	ND	ND	_	_	mg/L
7	阴离子合成洗涤剂	ND	ND	ND	ND	_	_	mg/L
8	氯化物	26.5	23.8	30.6	28.1	_	_	mg/L
9	砷	ND	ND	ND	ND	_	_	mg/L
10	汞	ND	ND	ND	ND	_	_	mg/L
11	六价铬	ND	ND	ND	ND	_	_	mg/L
12	总硬度	300	291	284	301	_	_	mg/L
13	铅	ND	ND	ND	ND	_	_	mg/L
14	氟化物	0.8	0.6	0.8	0.6	_	_	mg/L
15	镉	ND	ND	ND	ND	_	_	mg/L
16	铁	0.26	0.3	0.21	0.25	_	_	mg/L
17	铜	ND	ND	ND	ND	_	_	mg/L
18	锰	0.43	0.36	0.39	0.41	_	_	mg/L
19	溶解性总固体	534	521	481	549			mg/L
20	高锰酸盐指数	1.13	1.05	1.08	1.21			mg/L
21	硫酸盐	68	73	65	68			mg/L
22	总大肠菌群	ND	ND	ND	ND			个/L

注:"一"表示该项目不作检测。

表 3-15 地下水水质各监测因子标准指数评价结果表

序号	版御田 7.	引用的监测结果				
175	监测因子	D1	D2	D3	D4	
1	pH 值	0	0.08	0.38	0.4	
2	氨氮	3.92	3.96	3.905	3.97	
3	硝酸盐	0.05	0.045	0.05	0.05	

4	亚硝酸盐	_	_		
5	挥发酚	_		_	
6	阴离子合成洗涤剂	_	_	_	

续上表

天工 化							
序号	监测因子		引用的监				
17. 4	血侧凸 1	D1	D2	D3	D4		
7	氯化物	0.11	0.10	0.12	0.11		
8	砷	_	_	_	_		
9	汞	_	_	_	_		
10	六价铬	_	_	_	_		
11	总硬度	0.67	0.65	0.63	0.67		
12	铅	_	_	_	_		
13	氟化物	0.80	0.60	0.80	0.60		
14	镉	_	_	_	_		
15	铁	0.87	1.00	0.70	0.83		
16	铜	_	_	_	_		
17	锰	4.30	3.60	3.90	4.10		
18	溶解性总固体	0.53	0.52	0.48	0.55		
19	高锰酸盐指数	0.38	0.35	0.36	0.40		
20	硫酸盐	0.27	0.29	0.26	0.27		
21	总大肠菌群						

注:"/"表示低于检出限的指标不做标准指数值分析。

由表 3-17 可知,监测期间 D1、D2、D3 和 D4 的氨氮和锰在均出现超标情况, D1、D2、D3 和 D4 其余的监测因子均满足《地下水质量标准》(GB/T14848-93)中的Ⅲ类水质要求,说明区域地下水环境已受到一定污染,不能满足相应的地下水环境质量要求。

(四) 声环境质量现状监测与评价

委托广东德群检测技术有限公司于 2017 年 7 月 5 日 $^{\sim}$ 7 月 6 日连续进行声环境质量监测。详见附件 2。

(1) 监测点位及监测项目

根据《环境影响评价技术导则-声环境》(HJ 2.4-2009)要求,本次声环境质量现状监测主要对 15号厂房厂界及周边敏感点进行监测,监测布点情况详见表 3-16 和图 3-4。

表 3-16 15 栋项目及周边敏感点声环境监测点位一览表

序号	监测点名称	监测项目	
1#	西厂界		
2#	北厂界	空か左歩∧ 吉卯 Ⅰ。。(^)	
3#	东厂界	等效连续 A 声级 Leq (A)	
4#	南厂界		

(2) 监测时间与频率

本次委托广东德群检测技术有限公司于 2017 年 7 月 5 日~7 月 6 日连续监测两天,分别在昼间 (06:00~22:00)、夜间 (22:00~06:00) 两个时段,每天昼夜间各监测一次。

图 3-4 声环境质量现状监测布点图

(3) 监测方法

按《环境影响评价技术导则 声环境》(HJ2.4-2009)、《工业企业厂界环境噪声排放标准》(GB12348-2008)及《声环境质量标准》(GB3096-2008)中的有关规定进行。监测方法见下表 3-17 所示。

监测项目	监测仪器	检出限
环境噪声	多功能声级计 AWA6228-6	25~125dB(A)

表 3-17 噪声监测方法

(4) 评价标准

评价区域汕尾声环境质量执行《声环境质量标准》(GB3096-2008)3类标准,即昼间等效声级 ≤65dB(A),夜间等效声级≤55dB(A)。

(5) 监测结果分析与评价

声环境现状监测结果见表 3-18。

表 3-18 声环境质量现状监测结果 单位: dB(A)

监测点位	标准限值	监测日期	昼间	夜间
1#西面厂界外 1m 处	界外 1m 处	2017年7月5日	56	46
, ,, , ,	《工业企业厂界环境	2017年7月6日	57	47
2#北面厂界外 1m 处	《工业企业》	2017年7月5日	58	47
2#76国/ 列列 1111 处	(GB12348-2008)3类:	2017年7月6日	58	46
3#东面厂界外 1m 处	任B12548-2008/5 矣: 昼间≤65dB (A),夜 间≤55dB (A)	2017年7月5日	59	48
3#永囲/ 孙孙 田田 处		2017年7月6日	59	49
4#南面厂界外 1m 处	[H] < 330D (A)	2017年7月5日 57	57	47
4#		2017年7月6日	58	48

可见,1#~4#监测点位的昼间、夜间现状监测噪声值均满足《工业企业厂界环境噪声排放标准》 (GB12348-2008)3类,说明项目所在区域的声环境质量良好。

(五) 土壤现状监测与评价

本评价引用广东德群检测技术有限公司和广东中润检测技术有限公司于 2016 年 12 月 19 日对新地村居委会门口、信利员工宿舍门口和港湾 1 号西侧进行土壤现状监测,具体情况如下。引用监测报告详见附件 1。

(1) 监测布点及监测项目

拟在项目评价区域布设 3 个土壤监测点,监测布点和监测项目情况详见表 3-19,土壤监测布点 图见图 3-5。

表 3-19 土壤监测布点一览表

序号	监测点	监测项目
T1	新地村居委会门口	pH 值、汞、砷、镉、铅、铬、铜、
T2	信利员工宿舍门口	pri 但、水、岬、蝴、坩、坮、墹、 锌、镍共 9 项
Т3	港湾1号西侧	[

(2) 监测时间与频率

2016年12月19日,监测1天,每天监测一次。

图 3-5 土壤环境质量现状监测布点图

(3)监测分析方法

一次采样监测,同时记录所采土壤类型。分析方法按国家环保局的《环境监测分析方法》、《土壤元素的近代分析方法》(中国环境监测总站编)的有关要求进行。分析方法如表 3-20 所示。

			8 8		
序 号	检测 项目	检测方法	方法标准编号	使用仪器	最低检出 限
1	pH 值	森林土壤 PH 的测定	LY/T1239-1999	台式 PH 计 FE28	0.01 (无量 纲)
2	汞	冷原子吸收分光光度法	GB/T 17136-1997	/	0.005
3	砷	二乙基二硫代氨基甲酸银分光光度法	GB/T 17134-1997	/	0.5
4	镉	石墨炉原子吸收分光光度法	GB/T17141-1997	/	0.01
5	铅	石墨炉原子吸收分光光度法	GB/T17141-1997	/	0.1
6	铬	火焰原子吸收分光光度法	HJ491-2009	/	5
7	铜	火焰原子吸收分光光度法	GB/T 17138-1997	/	1
8	锌	火焰原子吸收分光光度法	GB/T 17138-1997	/	0.5
9	镍	火焰原子吸收分光光度法	GB/T 17139-1997	/	5

表 3-20 土壤项目监测分析方法(单位: mg/kg)

(4)评价标准

本项目土壤质量评价执行《土壤环境质量标准》(GB15618-1995)中的二级标准,标准限值见表 3-21。

二级标准 序号 项目 pH < 6.5 $pH = 6.5 \sim 7.5$ pH > 7.5镉< 1 0.30 0.30 0.60 2 汞< 0.30 0.50 1.0 砷 水田 < 25 30 20 3 砷 旱田 ≤ 40 30 25 铜 农田等< 50 100 100 4 铜 果园 < 150 200 200 5 铅≤ 250 300 350 250 300 铬 水田≤ 350

表 3-21 土壤质量评价执行标准(单位: mg/kg, pH 除外)

(5) 监测结果及分析评价

铬 旱地<

锌<

镍<

6

8

本次监测土壤中的含量见表 3-22。土壤质量评价执行《土壤环境质量标准》(GB15618-1995) 中的二级标准,采用标准指数法进行分析评价,详见表 3-23。

150

200

40

编号及监测点位		监测项目								
拥与及监侧 总型	pН	汞	砷	镉	铅	铬	铜	锌	镍	
T1新地村居委会门	7	ND	ND	0.01	53.5	47.7	35.7	52.4	7.24	
T2信利员工宿舍门	6.91	ND	ND	0.02	37.6	65.5	22.3	46.3	5.41	
T3港湾1号西侧	7.06	ND	ND	0.02	49	75.2	26.8	54.7	6.05	

表 3-22 土壤监测结果 单位: mg/kg

200

250

50

250

300

60

表 3-23 土壤评价结果

编号及监测点位		监测项目								
	汞	砷	镉	铅	铬	铜	锌	镍		
T1新地村	ND	ND	0.03	0.18	0.24	0.36	0.21	0.14		
T2信利员工宿舍	ND	ND	0.07	0.13	0.33	0.22	0.19	0.11		
T3港湾1号西侧	ND	ND	0.07	0.16	0.38	0.27	0.22	0.12		

由表 3-23 可知,本次监测汞、砷、镉、铅、铬、铜、锌和镍的监测值均满足评价标准值的要求,项目所在区域土壤环境质量现状良好。

注: 1、所采土壤类型为砂壤土;

^{2、&}quot;ND"表示未检出,检出限见"四、检测方法附表"部分;

四、评价适用标准

环

(1) 环境空气

境

《环境空气质量标准》(GB3095-2012) 二类标准,TVOC参照执行《室内空气质量标准》(GB/T18883-2002)。

质

(2) 海水

量

《海水水质标准》(GB38097-1997) 二类标准。

标

准

(3) 声环境

《声环境质量标准》(GB3096-2008)3类标准。

(4) 土壤环境

《土壤环境质量标准》(GB15618-1995)二级标准。

污

*7*5

(1) 水污染物排放标准

染 物 排

生产废水执行《广东省水污染物排放限值》(DB44/26-2001)第二时段一级标准限值;办公生活污水经三级化粪池处理后达到《广东省水污染物排放限值》(DB44/26-2001)第二时段三级标准;由市政管网排入汕尾市东区污水处理厂,统一处理达标后排入品清湖。

放

具体标准排放限值见表 4-1。

标

准

表 4-1 水污染物排放标准(单位: mg/L, pH 值除外)

	生产废水排放标准	生活污水排放标准		
排水标准	《水污染物排放限值》	《水污染物排放限值》(GB44/26-2001		
	(GB44/26-2001) 第二时段一级标准	第二时段三级标准		
pН	6-9	6-9		
COD	90	500		
BOD_5	20	300		
SS	60	400		
NH ₃ -N	10			

(2) 大气污染物排放标准

项目生产过程中产生的主要大气污染物执行《广东省大气污染物排放限值》

(DB44/27-2001)第二时段二级标准,其中 VOCs 排放标准参照执行《印刷行业挥发性有机化合物排放标准》(DB44/815-2010) II 时段标准。

具体标准排放限值见表 4-2。

表 4-2 大气污染物排放限值

	7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7							
序号	污染物	最高允许排放浓度	最高允许排放速率(kg/h)					
厅 与	75条初	(mg/m^3)	排气筒(m)	二级				
1	NO_x	120	21	0.63				
2	SO_2	500	21	2.22				
3	颗粒物	120	21	0.455				
4	锡及其化合物	8.5	21	0.2685				
5	VOCs	120	21	5.1				

注: 15 号厂房现阶段没有废气排气筒,本项目大气污染物最高允许排放速率,按照内插法计算(VOCs除外),在本项目周边 200m 范围内,16 号厂房的排气筒高度高于本项目排气筒高度 6 米,则污染物最高允许排放速率采用外推法再严 50%计算标准执行。

(3) 噪声排放标准

项目运行期执行《工业企业厂界环境噪声排放标准》(GB12348-2008)中的 3 类标准。具体标准排放限值见表 4-3。

表 4-3 工业企业厂界环境噪声排放限值 单位: dB(A)

声功能区类别	昼间	夜间
3	65	55

总

量

控

(一) 水污染物排放总量控制

本项目生产废水经自建的 1 号废水站处理至《广东省水污染物排放限值》(DB44/26-2001)第二时段一级标准限值;与办公生活污水经三级化粪池处理至《广东省水污染物排放限值》(DB44/26-2001)第二时段三级标准,排入汕尾市东区污水处理厂处理,经汕尾市东区污水处理厂进一步处理后排入品清湖。

为此,本项目废水排放总量建议由东区污水处理厂统一调配。

(二) 大气污染物排放总量控制

根据本项目污染物排放的特征,本次评价建议总项目大气污染物排放总量指标为: VOCs: 0.00122t/a。

制指标

五、建设项目工程分析

工艺流程及产污环节分析 1、以太网摄像头模组生产工艺流程及产污环节分析 项目以太网摄像头模组产品生产线生产工艺流程及产污环节如下。 各种元器 FBC或PCB板 锡膏 氮气 环保清洗剂、DI水 锡膏印锡 回流焊 外观检查 固件烧录 贴元件 清洗 烘干 清洗后的钢网 回流焊废气 清洗废水 钢网 无水乙醇 镜头、外壳、 钢网擦拭纸 擦拭 清洗 导线 乙醇废气、含乙醇沉 含锡废纸 组装 淀锡渣、报废钢网 外壳、螺丝 切割分粒 胶水 激光切割· 镜头搭载 总装 调焦 固化 点胶 有机废气 有机废气 DI水 老化/防水测试 功能测试 打标 包装出货 清洗废水 进入系统总成生产 图 5-1 以太网摄像头模组产品生产工艺流程 生产工艺过程及产污环节说明:

(1) 固件烧录

固件是具有软件功能的硬件,与 FPC 板及 PCB 板同时存在,固件烧录就是将软

件系统烧录进 FPC 板及 PCB 板。此过程在参数自动烧录机完成。

(2) 锡膏印刷

将固件烧录后的 FPC 板或 PCB 板及锡膏放在印刷机中,通过印刷机在 FPC 板或 PCB 板上印刷一层锡膏。此过程为全自动过程,在锡膏印刷机内完成。

锡膏印刷机印刷用钢网进行印刷,钢网使用后要进行清洗,每天清洗一次,清洗过程使用无水乙醇喷淋进行清洗,清洗完后进行风干,清洗风干都是在清洗机中进行。在清洗风干会挥发产生乙醇废气,通过引风机收集后经活性碳吸附装置处理后楼顶高空排放,清洗过程全密封,无乙醇无组织排放;擦拭钢网后会产生含锡废纸;清洗会产生含少量乙醇的锡渣,直接沉淀在清洗机最下面的渣槽中;清洗风干后的钢网进行检查,会产生报废钢网。

(3) 贴元件

通过印锡的 FPC 板或 PCB 板进入高速贴片机,贴片机自动将元器件贴入经印锡后的 FPC 板或 PCB 板锡膏上。

(4) 回流焊

贴好元件的 FPC 板或 PCB 板自动进入回流炉,进行回流焊,回流焊是在氮气保护下进行。回流焊目的是使元器件与 FPC 板或 PCB 板上锡膏牢固焊接到一起。回流焊分为四个过程,分别预热区、升温区、回流区及冷却区。

预热区:将 FPC 板或 PCB 板加热至 150℃左右,升温速率为 1~3℃/秒。

升温区:将整个板子慢慢加热至 180℃左右,时间一般为 60~90 秒。

回流区: 将整个板子加热至 200℃~220℃, 使锡膏融化, 回流时间约 45~60 秒, 最大不超过 90 秒。

冷却区:将整个板子进行冷却,冷却速率为2~4℃/秒。

整个过程采用电加热,在焊接过程中,FPC 板或 PCB 板跟元器件都不融化,只有锡膏融化,会产生回流焊废气,在回流炉上配套有排气系统,回流焊废气收集经排风系统收集引至楼顶高空排放。

(5) 外观检查、清洗

经过回流焊的板进行人工外观检查,检查元器件是否焊接牢固。检查后的板进入超声波清洗机中进行清洗,此过程会产生清洗废水。

(6) 烘干、点胶

将清洗好的板放入烤箱进行烘干,烘干时间约为 3 小时,温度为 80~90℃。烤箱使用电加热。烘干后的板进入点胶机,点胶过程会有少量的胶水挥发,产生有机废气,通过引风机收集后经活性碳吸附装置处理后楼顶高空排放,点胶机全密封,无有机废气无组织排放。

(7) 镜头搭载、固化

镜头搭载前,首先将镜头与外壳、导线进行组装起来后,然后镜头搭载在 FPC 板或 PCB 板点胶处。将完成镜头搭载的板放入烘烤机中进行固化,固化过程会有胶水挥发,产生有机废气,通过引风机收集后经活性碳吸附装置处理后楼顶高空排放,烘烤机全密封,无有机废气无组织排放。

(8) 激光切割

将上述板放入激光切割机中进行切割。切割电路板底板,得到多个单粒的摄像头 模组,过程无废物产生。

(9) 调焦、总装

使用自动光学检测机对摄像头模组进行调焦,以确保能让镜头处于成像清晰点的位置,并将外壳、螺丝安装在摄像头模组中。

(10) 老化/防水测试

总装好的摄像头模组放入防水测试机中,加入 DI 水进行防水测试。此过程会产生普通清洗废水。

(11) 功能测试、打标

老化/防水测试后进入自动功能检测机进行功能检测,利用自动激光打标分粒机打出标签,贴在产品上。

(12) 包装出货

部分产品进入系统总成生产,部分产品进行包装后进入仓库按出货单出货,出货 前要检查产品是否完好。

2、系统产品生产工艺流程及产污环节分析

倒车智能后视系统、360 度全景泊车影像系统、车道偏离报警系统、夜视辅助系统、自适应巡航控制、驾驶员疲劳监控系统统称为系统产品。系统产品生产过程由 ECU(电子控制单元)主板生产过程和系统总成两个过程组织。分述如下。

(1) ECU(电子控制单元)主板生产工艺流程及产污环节分析

项目 ECU(电子控制单元)主板生产线生产工艺流程及产污环节如下。

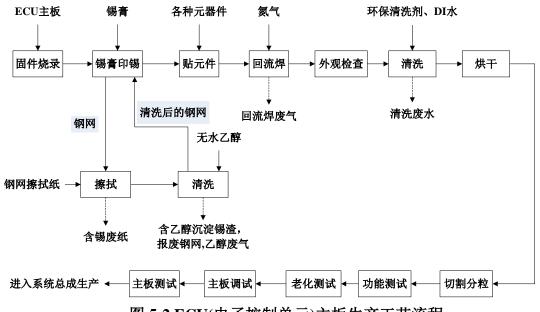


图 5-2 ECU(电子控制单元)主板生产工艺流程

生产工艺过程及产污环节说明:

(1) 装线、装 ECU 主板、固定主板

将电线、项目生产的 ECU 主板装入玻璃板上,使其固定。

(2) 锡膏印刷 (擦试、清洗)

将固件烧录后的 ECU 板及锡膏放在印刷机中,通过印刷机在 ECU 板上印刷一层锡膏。此过程为全自动过程,在锡膏印刷机内完成。

锡膏印刷机印刷用钢网进行印刷,钢网使用后要进行清洗,每天清洗一次,清洗过程使用无水乙醇喷淋进行清洗,清洗完后进行风干,清洗风干都是在清洗机中进行。在清洗风干会挥发产生乙醇废气,通过引风机收集后经活性碳吸附装置处理后楼顶高空排放,清洗过程全密封,无乙醇无组织排放;擦拭钢网后会产生含锡废纸;清洗会产生含少量乙醇的锡渣,直接沉淀在清洗机最下面的渣槽中;清洗风干后的钢网进行检查,会产生报废钢网。

(3) 贴元件

通过印锡的 ECU 板进入高速贴片机,贴片机自动将元器件贴入经印锡后的 ECU 板锡膏上。

(4) 回流焊

贴好元件的 ECU 板自动进入回流炉,进行回流焊,回流焊是在氮气保护下进行。 回流焊目的是使元器件与 ECU 板上锡膏牢固焊接到一起。

(5) 外观检查

经过回流焊的板进行人工外观检查,检查元器件是否焊接牢固。

(6) 清洗

检查后的 ECU 板进入超声波清洗机中进行清洗,清洗过程中使用了环保清洗剂和 DI 水,此过程会产生清洗废水。

(6) 烘干

将清洗好的 ECU 板放入烤箱进行烘干,烘干时间约为 3 小时,温度为 80~90℃。 烤箱使用电加热。

(7) 切割分粒

将 ECU 板放入激光切割机中进行切割。切割电路板底板,得到多个单粒的模组,过程无废物产生。

(8) 功能测试

切割分粒进入自动功能检测机进行功能检测,利用自动激光打标分粒机打出标

签,贴在产品上。

(9) 老化测试

功能测试后模组放入防水测试机中,加入 DI 水进行防水测试。此过程会产生普通清洗废水

(10) 主板调试

将老化测试后的模组进行主板通电调试。

(11) 进入系统总成生产

产品进行系统总成生产程序。

主要污染工序

(一) 施工期

本项目位于汕尾市城区工业大道中段南侧信利工业城内 15 号厂房第一层和第二层,属于信利工业城范围内,由于 15 号厂房已于 2006 年建设完毕,故施工期的环境污染较少,主要是设备安装及公用工程产生的施工噪声、少量装修废气、少量施工固体废物。

(二) 营运期

(1) 废气

本项目产生的废气有:回流焊过程产生的回流焊废气、钢网清洗过程产生的乙醇废气、点胶固化过程产生的 VOCs 有机废气。

①回流焊废气

项目在回流焊接过程,由于 FPC 板或 PCB 板上印有锡膏,锡膏为无铅锡,无铅锡主要是由锡/银/铜三部分组成,由银和铜来代替原来的铅的成分。项目锡膏用量为0.215t/a,锡膏在回流焊过程中会产生含锡及其化合物的废气。根据调查,信利光电股份有限公司 21 号厂房用到相同的锡膏,用量为3.96t/a,项目回流焊废气中的锡及其化合物的产生量类比21 号厂房竣工环境保护验收监测的实测数据。项目21 号厂房竣工环境保护验收监测的实测数据。项目21 号厂房竣工环境保护验收监测的实测数据。项目21 号厂房竣工环境保护验收监测的实测数据如下。监测报告编号(汕)环境监测(YS)字(2013)第0003

号。

表 5-1 21 号厂房锡及其化合物竣工环境保护验收监测结果 单位: kg/h

日期		2012.12.25		2012.12.26					
监测点位	上午	上午 下午		上午	下午	平均			
处理设施前采样	2.29×10^{-3}	3.63×10^{-3}	2.3×10^{-3}	3.01×10^{-3}	3.56×10^{-3}	3.33×10^{-3}			
总平均		2.81×10^{-3}							

项目产生的锡及其化合物的量类比上述监测数据,再根据项目锡膏的用量 (0.215t/a)计算其产生量,产生量为 0.000734t/a。根据设计资料,回流焊废气通过楼顶的引风机收集引至楼顶高空排放,风量为 3000m³/h,年运行时间为 4800 小时。项目回流焊废气产生排放情况如下。

废气量 $3000\text{m}^3/\text{h}$ (1440 万 m³/a) 污染物 锡及其化合物 产生浓度(mg/m³) 0.051 污染物产生情况 产生速率(kg/h) 0.000153 产生量(t/a) 0.000734 排放浓度(mg/m³) 0.051 污染物排放情况 排放速率(kg/h) 0.000153 排放量(t/a) 0.000734

表 5-2 项目回流焊废气产生排放情况

根据对比《广东省大气污染物排放限值》(DB44/27-2001)第二时段二级标准,即锡及其化合物的最高允许排放浓度为8.5mg/m³,21米最高允许排放速率为0.2685kg/h,项目回流焊废气中锡及其化合物能够达标排放。

排放浓度(mg/m³)

排放速率(kg/h)

8.5

0.1875

③乙醇废气、胶水点胶及固化过程的有机废气

排放标准

项目钢网清洗采用乙醇喷淋进行清洗,在风干会产生挥发的乙醇废气,项目通过活性碳吸附装置的引风机收集乙醇废气,收集乙醇废气经活性碳吸附处理后通过楼顶高空排放,清洗过程全密封,无乙醇无组织排放。项目清洗钢网乙醇用量为 4.36t/a,项目使用乙醇为无水乙醇,除少量(约 20%)随着锡沉淀在清洗机下方外,其他均挥

发,挥发量为3.488t/a。

本项目有机废气主要来源于胶水点胶及固化过程挥发。根据调查,信利光电股份有限公司 21 号厂房新型显示器件生产项目用到同类的胶水,用量约为 13.31t/a,本项目胶水点胶及固化过程产生的有机废气 VOCs 的产生量类比 21 号厂房新型显示器件生产项目竣工环境保护验收监测((汕)环境监测(YS)字(2013)第 0003 号)的实测数据。

2012.12.25 2013.12.26 日期 监测点位 上午 下午 平均 上午 下午 平均 处理设施前采样 1.20 1.11 1.155 1.16 1.43 1.295 总平均 1.225

表 5-3 21 号厂房竣工环境保护验收 VOCs 监测结果(单位: kg/h)

项目胶水点胶及固化过程产生的 VOCs 有机废气的量类比上述监测数据,再根据项目胶水的用量(0.0552t/a)计算得其产生量为 0.0244t/a。项目点胶及固化设备设有风管,连接活性碳吸附装置的引风机,点胶及固化设备全封闭,有机废气全部呈有组织排放。

根据设计资料,风量为 5000m³/h,年运行时间为 4800 小时。活性碳对有机废气吸附处理效率不小于 95%。有机废气收集处理后楼顶高空排放,排放高度为 21m。胶水点胶及固化过程有机废气与乙醇废气共用一套活性炭吸附装置,吸附处理效率 95%。项目总有机废气产生排放情况如下。

废	气量	5000m³/h(2400 万 m³/a)
污	染物	VOCs
	产生浓度(mg/m³)	98
污染物产生情况	产生速率(kg/h)	0.49
	产生量(t/a)	3.512
	排放浓度(mg/m³)	4.6
污染物排放情况	排放速率(kg/h)	0.023
	排放量(t/a)	0.167
41: 34 47 42	排放浓度(mg/m³)	120
排放标准	排放速率(kg/h)	5.1

表 5-4 项目有机废气废气产生排放情况

对比《印刷行业挥发性有机化合物排放标准》(DB44/815-2010)中排放标准限值,即 VOCs 的最高允许排放浓度为 120mg/m³,最高允许排放速率为 5.1kg/h,项目有机

废气中 VOCs 能够达标排放。

(2) 废水

1) 用水情况

本项目用水主要为清洗用水、, 防水测试用水、反渗透膜清洗用水、办公生活用水及冷却塔用水等。清洗废水、反渗透膜清洗废水收集进入1号综合污水处理站处理后排入市政管网, 办公生活污水经过相应预处理后排入市政管网, 冷却塔废水属于清下水, 直接排入雨水管网。项目水平衡见图1-1所示。



图 5-3 项目车间水平衡图

其中项目生产用水为纯水,由纯水制备房提供,15号厂房设有一个纯水间,位于15号厂房,纯水制备能力为100吨/小时。

2) 排水情况

①清洗废水

项目回流焊接后的板要进行超声波清洗,超声波清洗使用 DI 水,防水测试过程中,要用 DI 水进行防水测试,项目这二股废水统一为清洗废水,主要污染物特征表现为 CODcr、 BOD_5 、悬浮物、阴离子表面活性剂等,主要污染类型为有机污染。根据建设单位提供的资料,本项目清洗废水产生量约为 $70 \text{m}^3/\text{d}$, $21000 \text{m}^3/\text{a}$ 。项目废水污染物源强类比信利工业城其他使用同类环保清洗剂的项目清洗废水,主要污染物源强为: CODcr 600 mg/L, BOD_5 300 mg/L,SS 100 mg/L,氨氮 20 mg/L,阴离子表面活性剂 15 mg/L。

项目清洗废水通过管道收集进入1号综合污水处理站综合废水处理系统处理,经1号综合污水处理站处理后达到《广东省水污染物排放限值》(DB44/26-2001)第二时段一级标准进入市政管网。项目清洗废水产生排放情况如下。

100 c 1110 a 2011 A 111								
情况	废水量	污染物	CODer	BOD ₅	SS	氨氮	阴离子表面活性剂	
产生情况	70 3/1	产生浓度(mg/L)	600	300	100	20	15	
	70m³/d, 2.1 万 m³/a	日产生量(kg/d)	42	21	7	1.4	1.05	
		年产生量(t/a)	12.6	6.3	2.1	0.42	0.315	
	70m³/d, 2.1 万 m³/a	排放浓度(mg/L)	90	20	60	10	5.0	
排放情况		日排放量(kg/d)	6.3	1.4	4.2	0.7	0.35	
		年排放量(t/a)	1.89	0.42	1.26	0.21	0.105	

表 5-5 清洗废水产生排放情况

②反渗透膜清洗废水

纯水制备系统的反渗透膜(RO 膜)在正常运行一段时间后,受到给水中存在的悬浮物或难溶盐的影响,可能在 RO 膜表面产生一定的沉积物,需定期进行清洗,产生的清洗废水 16m³/d。主要污染物 pH、CODCr 及 SS 等。反渗透膜清洗废水污染源源强类比信利光电股份有限公司同类生产线项目新型显示器件生产项目纯水制备过程废水中污染物的产生浓度情况。反渗透膜清洗废水经 1 号综合污水处理站处理后达到《广东省水污染物排放限值》(DB44/26-2001)第二时段一级标准进入市政管网。项目反渗透膜清洗废水产生排放情况如表 5-6。

表 5-6 本项目运营期反渗透膜清洗废水产生排放情况										
情况	废水量 污染物 pH CODcr									
	16m³/d, 0.48 万 m³/a	产生浓度(mg/L)	8~10	200	100					
产生情况		日产生量(kg/d)		3.2	1.6					
		年产生量(t/a)	/	0.96	0.48					

	排放情况 16m³/d, 0.48 万 m³/a	排放浓度	6~9	90	60
排放情况		日排放量(kg/d)	/	1.44	0.96
	0.46 / 1 111 / 11	年排放量(t/a)	/	0.432	0.288

③办公生活污水

项目规划员工人数为 605 人,员工住宿依托现有的宿舍,为避免重复计算生活污水量,项目只统计办公生活污水,其用水量按 50L/人•d,项目办公生活用水量为 30.25m³/d,9075m³/a。办公生活污水产生系数按 90%计,办公生活污水产生量为 27.225m³/d,8167.5m³/a,废水中主要污染物为 COD、氨氮、悬浮物、BOD5、TP等,项目办公生活污水经三级化粪池处理后达到《广东省水污染物排放限值》 (DB44/26-2001)第二时段三级标准进入市政管网,进入汕尾市东区污水处理厂进一步处理达标后外排。

根据典型办公生活污水水质情况和三级化粪池的处理效率,本项目办公生活污水的产生及排放情况,见表 5-7。

项目	废水量	主要污染物						
	及小里	COD_{Cr}	BOD ₅	SS	NH ₃ -N	TP		
产生浓度(mg/L)		250	150	200	25	3		
日产生量(kg/d)		6.81	4.08	5.45	0.68	0.082		
年产生量(t/a)	$27.225 \text{m}^3/\text{d}$	2.04	1.23	1.63	0.20	0.025		
排放浓度(mg/L)	0.8168 万 m³/a	175	90	50	20	2.5		
日排放量(kg/d)		4.76	2.45	1.36	0.54	0.068		
年排放量(t/a)		1.43	0.74	0.41	0.16	0.020		

表 5-7 办公生活污水产生及排放情况一览表

④冷却塔废水

本项目在 15 号厂房天台上设空调主机 1 台,空调主机有冷却塔 1 个。本项目使用冷却塔循环水量约 $1250 m^3/h$,需补充新鲜水量约 $300 m^3/d$,排放量约 $60 m^3/d$,主要污染物为 CODCr、 BOD_5 及 SS 等。

 情况
 废水量
 污染物
 CODcr
 BOD₅
 SS

 产生情况
 60m³/d
 产生浓度(mg/L)
 100
 20
 100

表 5-8 本项目冷却塔废水污染物情况

日产生量(kg/d) 6 1.2 6

冷却塔废水属于清净下水,直接通过雨水管网排放。

⑤废水排放情况汇总

项目各种废水排放情况如下表所示。

表 5-9 各种废水排放情况汇总

废水	湟	清洗废水		反渗透	5膜清洗	废水	办公	生活污水	<	总计
废水量	70m ³ /d	70m³/d,2.1 万 m³/a			16m³/d,0.48 万 m³/a			27.225m3/d, 0.8168万 m³/a		
污染物	排放浓 度 mg/L	日排 放量 kg/d	年排 放量 t/a	排放浓 度 mg/L	日排 放量 kg/d	年排 放量 t/a	排放浓度 mg/L	日排 放量 kg/d	年排 放量 t/a	排放量 t/a
CODcr	90	6.3	1.89	/	/	/	175	4.76	1.43	3.32
BOD_5	20	1.4	0.42	90	1.44	0.432	90	2.45	0.74	1.592
SS	60	4.2	1.26	60	0.96	0.288	50	1.36	0.41	1.598
氨氮	10	0.7	0.21	/	/	/	20	0.54	0.16	0.37
TP	/	/	/	/	/	/	2.5	0.068	0.02	0.02
阴离子 表面活 性剂	5	0.35	0.105	/	/	/	/	/	/	0.105
排放去向	项目生产废水通过管道收集进入1号综合污水 处理站综合废水处理系统处理,经1号综合污水 处理站处理后达到《广东省水污染物排放限值》 (DB44/26-2001)第二时段一级标准进入市政管 网。						项目办公生 化粪池处理 省水污染。 (DB44/26-2 三级标准进 进入汕尾市	后达到 物排放限 2001)第 注入市政	《广东 艮值》 二时段 管网,	/

(3) 噪声

本项目噪声源主要来自锡膏印刷机、高速贴片机、回流炉、超声波清洗机、自动点胶机、风机、水泵等等生产过程中的一些机械传动设备,源强约在 75~95dB(A)。本项目主要高噪声设备源强情况见表 5-10。

表 5-10 主要噪声源及源强(单位: dB(A))

序号	噪声源	治理前单个设备源强	治理后单个设备源强	降噪措施
1	锡膏印刷机	80	60	
2	高速贴片机	90	65	
3	回流炉	90	65	设置减振基座,加强 设备保养与维护,车
4	超声波清洗机	95	65	以留休外与维护,平
5	高温烘烤机	80	60	IEU MED /
6	自动点胶机	80	60	

日初炕房化	7	自动贴膜机	75	55	
-------	---	-------	----	----	--

续上表

序号	噪声源	治理前单个设备源强	治理后单个设备源强	降噪措施
8	自动包装机	75	55	设置减振基座,加强
9	各类检测设备	80	60	设备保养与维护,车
10	水泵	90	65	间隔声
11	风机	85	60	加强设备保养与维 护,安装消声器
12	冷却塔	82	62	消声导流

高噪声设备经采取相应的降噪治理后,经过距离衰减后,厂区边界噪声达到《工业企业厂界环境噪声排放标准》(GB12348-2008)中的2类功能区标准要求,即昼间:60dB(A),夜间:50dB(A)。

(4) 固体废物

项目固体废物主要是含锡废纸、含乙醇锡渣、报废钢网、废次品、废包装材料、废活性碳及少量的办公生活垃圾。

①含锡废纸

项目在钢网清洗中,首先要用钢网擦拭纸擦拭钢网,会产生含锡废纸,锡废纸的产量为 0.5t/a。根据《国家危险废物名录(2016)》,不属于危险废物,拟交由专业的资源回收单位进行回收利用。

②含乙醇锡渣

项目用无水乙醇清洗钢网,清洗出的锡直接沉淀在清洗机下方,锡渣产生量为1.0t/a。由于锡渣中含有乙醇,根据危废名录,属于 HW06 废有机溶剂与含有机溶剂废物中的900-403-06: 工业生产中作为清洗剂或萃取剂使用后废弃的易燃易爆有机溶剂,包括正己烷、甲苯、邻二甲苯、间二甲苯、对二甲苯、1,2,4-三甲苯、乙苯、乙醇、异丙醇、乙醚、丙醚、乙酸甲酯、乙酸乙酯、乙酸丁酯、丙酸丁酯、苯酚。委托有相

关资质单位处理。

③报废钢网

印锡过程会使用钢网,钢网使用过一段时间后,会报废,根据建设单位提供,报废钢网量约为 0.2t/a。报废钢网属于一般固体废物,交由废物回收机构回收利用。

④废次品

项目在生产过程中有多个检查工序,均会产生报废次产品,产生量约为 0.5t/a。根据《国家危险废物名录(2016)》,不属于危险废物,拟交由专业的资源回收单位进行回收利用。

⑤危险废包装材料

项目使用原材料,会产生废包装材料,其中装过乙醇、胶水等危险化学品的容器产生量为 0.25t/a。根据《国家危险废物名录 (2016)》属于 HW49 其他废物 900-041-49含有或沾染毒性、感染性危险废物的废弃包装物、容器、过滤、吸附介质中的危险废物,交由有资质单位处理。

⑥一般废包装材料

装过板材、线束、连接器、镜头等一般物质的废包装纸,废包袋及废包装盒等属于一般固体废物,产生量约为 1.0t/a,交由废物回收机构回收处理。

⑦废活性碳

项目使用活性碳吸附处理乙醇及 VOCs 有机废气,15 号厂房新建一套活性碳吸附装置。根据建设单位提供的资料,全年乙醇及 VOCs 有机废气去除量为 5.417t/a,按 照每吨活性炭吸附能力 100%计算,需要活性炭用量为 5.417t/a,活性炭处理废气过程中,经过一定时间的使用,会发生饱和现象,需要定期更换,以保证其处理效率。根据设计要求,更换频次与生产量有关,一般在 3-6 个月更换一次。更换过程会产生废活性炭量约为 10.834t/a。根据《国家危险废物名录(2016)》,废活性碳属于 HW06 废有机溶剂与含有机溶剂废物 900-405-06 规定 900-401-06 中所列废物再生处理过程中产生的废活性炭及其他过滤吸附介质中的危险废物,交由有资质单位处理。

⑧生活垃圾

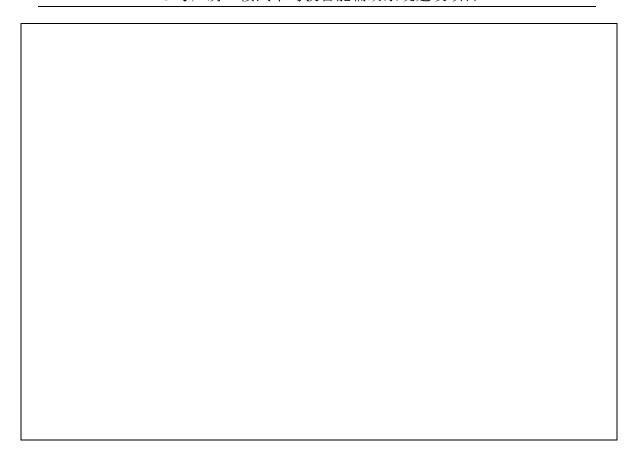
项目规划员工人数为 605 人,办公生活垃圾产生量按 0.2kg/人 d 计,则项目生活垃圾产生量 121kg/d,约合 36.3t/a。

⑨固体废物汇总

项目固体废物汇总如下。

表 5-11 项目固体废物产生量及处理处置措施

	*			
固废名称	废物类别	危废代码	产生量(t/a)	处置措施
含锡废纸	一般固体废物		0.5	交由专业的锡回收单位进行 回收利用
一般废包 装材料	一般固体废物		1.0	交由废物回收机构回收处理
废钢网	一般固体废物		0.2	交由废物回收机构回收利用
废次品	一般固体废物	_	0.5	交由废物回收机构回收利用
危险废包 装材料	HW49 其他废物	900-041-49	0.25	交由有资质单位处理
含乙醇锡 渣	HW06 废有机溶剂与含 有机溶剂废物	900-403-06	1.0	交由有资质单位处理
废活性碳	HW06 废有机溶剂与含 有机溶剂废物	900-405-06	10.834	交由有资质单位处理
生活垃圾	生活垃圾		36.3	交环卫部门处理
	合计		50.584	/


所有被有关规定列入《国家危险废物名录》内的产品和物质,均应分类存放,准确清楚地登记危险物质的数量、附上危险废物的明显标示,由专业技术人员负责这些物质的储存和运输的跟踪和管理工作,所有这些流程操作应符合有关管理和技术规定。

六、项目主要污染物产生及预计排放情况

类型	污染 源	污染物	产生浓度 (mg/m³)	产生量 (t/a)	排放浓度 (mg/m³)	排放量 (t/a)	排放去向
	回流	废气量		1440	万 m³/a		回流焊废气=能够达到《广 东省大气污染物排放限
废	焊废气	锡及其 化合物	0.051	0.0007	0.051	0.000734	值》(DB44/27-2001)第二 时段二级标准达标排放。 有机废气收集经活性碳吸
气气	有机 废气	废气量		2400	万 m³/a		附处理后楼顶高空排放, 达到《印刷行业挥发性有 机化合物排放标准》 (DB44/815-2010)中排放
	/X (VOCs	98	3.512	4.6	0.167	标准限值,排放高度为 21m
		废水量		2.1	废水收集进入信利工业城		
废	清洗	CODcr	600	12.6	90	1.89	1号综合污水处理站综合
水	废水	BOD_5	300	6.3	20	0.42	废水处理系统, 经处理后
		SS	100	2.1	60	1.26	达到《广东省水污染物排

		氨氮	20	0.42	10	0.21	放限值》(DB44/26-2001)
		阴离子 表面活 性剂	15	0.315	5.0	0.105	第二时段一级标准排入市 政管网,进入汕尾市东区 污水处理厂处理
	反渗	废水量		0.48	万 m³/a		
	透膜	рН	8~10	/	6~9	/	
	清洗	CODcr	200	0.96	90	0.432	
	废水	SS	100	0.48	60	0.288	
		废水量	0.8168 万 m³/a				
	+ 1/	CODcr	250	2.04	175	1.43	办公生活污水经三级化粪
	办公 生活	BOD_5	150	1.23	90	0.74	池处理后排入市政管网,
	_{王和} 污水	SS	200	1.63	50	0.41	进入汕尾市东区污水处理
	13/14	氨氮	25	0.20	20	0.16	厂处理
		总磷	3	0.025	2.5	0.020	
固	危险废物			12.084		交有资质单位处理	
体	一般固体废物 废 生活垃圾			2.2		返回给供货商或回收利用	
废			及	36.3			交由环卫部门处理
物		合计			50.584		/

主要生态影响:项目选址不在生态控制线范围内,周围及附近也没有特别的生态敏感点。项目产生的生活污水、生产废水、废液、固体废物及噪声经过处理达标后,对周围生态环境的影响较小。

七、环境影响分析

施工期环境影响分析

本项目位于汕尾市城区工业大道中段南侧信利工业城内 15 号厂房第一层和第二层,属于信利工业城范围内,由于 15 号厂房已于 2006 年建设完毕,故无施工期环境污染问题。

营运期环境影响分析:

(一) 运营期大气环境影响评价

(1) 气候特征

本次评价的气候统计数据采用汕尾市国家一般气象站(区站号: 59501, 东经: 115.3667°, 北纬: 22.80°, 位于项目约 2km) 1996~2015 年连续 20 年的统计资料。

汕尾市地处低纬北回归线以南,太阳辐射强烈,具有热量丰富、阳光充足、雨量充沛、四季分明、夏长冬短的气候特点,属亚热带季候风气候。表 7-1~7-2 和图

7-1 为气象观测资料统计结果。

表 7-1 近 20 年的主要气候资料统计结果表(1996~2015 年)

项目	数值			
• • • • • • • • • • • • • • • • • • • •				
年平均气温(℃)	22.7			
极端最高气温(℃)及出现的时间	38 出现时间: 2005年7月18日			
极端最低气温(℃)及出现的时间	2.9 出现时间: 1999年12月23日			
多年平均气压(hPa)	1011.5			
年平均相对湿度(%)	76.8			
多年均降雨量(mm)	1858.4			
多年主导风向、风向频率	E 15.2%			
年平均风速(m/s)	2.5			
是十回速(~~/a)及山坝的时间	52.5 相应风向: NNW			
最大风速(m/s)及出现的时间	出现时间: 2013 年 9 月 22 日			

表 7-2 累年各月平均风速 (m/s) (1996~2015年)

月份	1	2	3	4	5	6	7	8	9	10	11	12
风速	2.3	2.3	2.4	2.4	2.5	2.8	2.7	2.5	2.5	2.4	2.4	2.4

图 7-1 风向玫瑰图 (E 为主风向, 频率约 15.2 %, 静风频率 6.3%)

(2) 大气环境影响预测参数

1) 预测因子的选取

根据本项目废气排放情况,选取有机废气和回流焊废气。

2) 预测模式及内容

本次评价采用导则推荐的 SCREEN3 估算模式,估算各排气筒不同污染物指标

的小时平均地面轴线浓度及最大地面浓度,其敏感点的影响考虑相同污染物指标不同排气筒的情况的叠加影响。

3)污染物源强分析

项目有组织废气主要为乙醇和 VOC_S ,有机废气经收集后由废气处理系统处理达标后排放,排气筒高度为 21m。

(3) 影响预测结果与分析

1) 有机废气影响分析

项目有机废气通过活性碳吸附装置的引风集收集处理后,楼顶高空排放。乙醇 废气也属于有机废气中的一种。影响分析及治理措施乙醇废气及有机废气一起分析 评价。

本次评价采用导则推荐的 SCREEN3 估算模式,估算各排气筒不同污染物指标的小时平均地面轴线浓度及最大地面浓度。估算模式计算参数见表 7-3。正常工况计算结果见表 7-4,事故工况计算结果表见 7-5。

表 7-3 有机废气计算参数一览表

			P4 - 14 D	U/// (1) .		, ,	
污染源	污染 物	排气高度 (m)	出口内径 (m)	废气流量 (万 m³/a)	烟气温 度(K)	污染物排 放速率 (kg/h)	环境空气质 量标准限值 (mg/m³)
15 号厂房 有机废气	VOCs	21	0.5	3600	298.15	0.023	0.6

表 7-4 有机废气正常工况估模式计算结果

污染物	下风距离(m)	浓度(mg/m³)	占标率(%)	
	10	0.134	22.28	
	10	0.134	22.28	
	100	0.0064	1.06	
	100	0.0064	1.06	
	200	0.0054	0.9	
VOCs	300	0.0048	0.81	
VOCS	400	0.0039	0.65	
	500	0.0031	0.51	
	600	0.0025	0.41	
	700	0.0020	0.34	
	800	0.0017	0.28	
	900	0.0014	0.24	

	1000	0.0012	0.21
	1100	0.0011	0.18
	1200	0.0010	0.16
	1300	0.0009	0.15
	1400	0.0008	0.13
	1500	0.0007	0.12
	1600	0.0007	0.11
	1700	0.0006	0.1
	1800	0.0006	0.1
	1900	0.0005	0.09
	2000	0.0005	0.08
	2100	0.0005	0.08
	2200	0.0004	0.07
	2300	0.0004	0.07
	2400	0.0004	0.07
	2500	0.0004	0.06
最大落地浓度	10	0.134	22.28

表 7-5 有机废气事故工况估算模式结果表

污染物	下风距离(m)	浓度(mg/m³)	占标率(%)	
	10	2.848	474.67	
	10	2.848	474.67	
	100	0.136	22.62	
	100	0.136	22.62	
	200	0.116	19.27	
	300	0.103	17.17	
	400	0.082	13.75	
	500	0.065	10.9	
VOCs	600	0.052	8.75	
, 005	700	0.043	7.15	
	800	0.036	6	
	900	0.031	5.11	
	1000	0.027	4.42	
	1100	0.023	3.88	
	1200	0.021	3.45	
	1300	0.019	3.1	
	1400	0.017	2.81	
	1500	0.015	2.56	

	1600	0.014	2.36
	1700	0.013	2.18
	1800	0.012	2.03
	1900	0.011	1.89
	2000	0.011	1.78
	2100	0.010	1.68
	2200	0.010	1.59
	2300	0.009	1.51
	2400	0.009	1.44
	2500	0.008	1.37
最大落地浓度	10	2.848	474.67

项目正常工况下 VOCs 的最大落地浓度出现在 10m 处,最大落地浓度为 0.134mg/m³,占评价标准的比例为 22.28%,浓度低于评价标准值,事故工况下 VOCs 最大落地浓度出现在 10m 处,处于厂界范围内,最大落地浓度为 2.848mg/m³ 占标率 为 474.67%,浓度高于评价标准值 374.67%。

综上分析,本项目排放的有机废气,正常工况下污染物下风向地面轴线浓度、最大地面浓度贡献值均比较低,占标率低于 50%。事故工况下,污染物下风向地面轴线浓度、最大地面浓度贡献值有显著的增大,占标率高于评价标准值 374.67%,但污染物处于本项目厂界范围内,不会对厂界外造成影响。可见,只要建设单位认真落实本评价提出的各项环境污染防治措施,加强管理,保证环保资金的投入,确保污染物达标排放,本项目排放的有机废气对周边环境空气的影响比较小。

2)回流焊废气影响分析

根据工程分析,项目在回流焊接过程,FPC 板或 PCB 板上印有锡膏,会产生含锡及其化合物的废气,回流焊废气通过楼顶的风机收集引至楼顶高空排放,排放高度 21 米。

本次评价采用导则推荐的 SCREEN3 估算模式,估算各排气筒不同污染物指标的小时平均地面轴线浓度及最大地面浓度。估算模式计算参数见表 7-6。正常工况计算结果见表 7-7。

表 7-6 回流焊废气计算参数一览表

污染源 污染物		排气高度	出口内径	废气流量	烟气温	污染物排放	环境空气质量标	
行架你	行架彻	(m)	(m)	(万 m³/a)	度(K)	速率(t/a)	准限值 (mg/m³)	
回流焊	锡及其	21	0.5	1440	209 15	0.000724	0.12	
废气	化合物	21	0.5	1440	398.15	0.000734	0.12	

表 7-7 回流焊废气正常工况估模式计算结果						
污染物	下风距离(m)	浓度(mg/m³)				
	10	0.000001628				
	100	0.00001505				
	100	0.00001505				
	136	0.00001603				
	200	0.00001533				
	300	0.00001509				
	400	0.00001427				
锡及其化合物	500	0.00001433				
	600	0.00001412				
	700	0.00001334				
	800	0.0000124				
	900	0.00001152				
	1000	0.00001071				
	1100	0.00009986				
	1200	0.000009339				

续上表

污染物	下风距离(m)	浓度(mg/m³)
	1300	0.000008759
	1400	0.00000823
	1500	0.000007759
	1600	0.000007323
	1700	0.000006924
	1800	0.000006561
锡及其化合物	1900	0.00000623
	2000	0.000005923
	2100	0.00000564
	2200	0.00000538
	2300	0.00000514
	2400	0.000004919
	2500	0.000004713
最大落地浓度	136	0.00001603

项目正常工况下回流焊废气外排锡及其化合物的最大落地浓度出现在 136m 处,最大落地浓度为 $0.00001603mg/m^3$,浓度极低。

综上分析,本项目排放的回流焊废气,正常工况下污染物下风向地面轴线浓度、最大地面浓度贡献值比较低,污染物排放量很小。可见,只要建设单位认真落实本评价提出的各项环境污染防治措施,加强管理,保证环保资金的投入,确保污染物达标排放,本项目排放的回流焊废气对周边环境空气的影响比较小。

(4) 环境防护距离

由于本项目车间为一个相对封闭的环境,生产工序也均在封闭的设备中完成, 全部气体通过风管分类收集,乙醇废气、回流焊废气及有机废气的收集率为100%, 生产车间没有无组织排放源,因此不设定大气防护距离。

(二) 运营期地表水环境影响评价

本项目生产废水依托 1 号废水站进行处理后排入市政污水管网,排放污水水质执行《广东省水污染物排放限值》(DB44/26-2001)第二时段一级标准限值及第一类污染物最高允许排放浓度;办公生活污水经三级化粪池处理后排入市政污水管网,所排放污水水质执行《广东省水污染物排放限值》(DB44/26-2001)第二时段三级标准。项目产生污水处理达标后,经市政污水管网排入汕尾市东区污水处理厂污水,经汕尾市东区污水处理厂进一步处理后排入品清湖。汕尾市东区污水处理厂出水执行《广东省水污染物排放限值》(DB44/26-2001)第二时段一级标准和《城镇污水处理厂污染排放标准》(GB18918-2002)一级 B 标准、第一类污染物最高允许排放浓度较严者后排入品清湖。

按照《环境影响评价技术导则地面水环境》(HJ/T2.3-93),本报告对水环境影响不作预测计算,只作1号污水处理站纳管的可行性分析。

1号污水处理站处理能力为 6100m³/d,本项目排入 1号污水处理站综合污水处理系统的废水量为 86m³/d,占其综合污水处理系统处理规模的 1.4%。根据建设单位提供的数据,1号污水处理站现日处理量为 3500m³/d。因此,单从处理能力上看,1号污水处理站可以接纳本项目废水。

1 号污水处理站进水水质: COD≤1000 mg/L, BOD5≤200 mg/L, SS≤200 mg/L, NH₃-N≤20mg/L。本项目生产废水水质: COD 约 520mg/L,BOD₅ 约 180 mg/L,SS 约 120 mg/L,NH₃-N 约 18mg/L,可满足 1 号污水处理站进水水质要求。

综上所述,从水质水量上分析,正常工况下本项目废水对 1 号污水处理站的处理负荷带来的冲击很小,不会对 1 号污水处理站的正常运营带来不利影响,本项目废水接管可行。

(三) 运营期地下水环境影响预测分析

本项目营运期间可能对地下水造成污染的主要来源有两个部分:一是固废堆存可能导致固废淋滤液下渗造成的地下水污染;二是生产废水排放可能污染地下水。

(1) 固废临时堆存对地下水环境的影响

本项目设有临时危险储存间、废液罐和一般固废暂存间。危险废物暂存间的建设满足《危险废物贮存污染控制标准》(GB18597-2001)(2013年修订)相关要求,建有防泄漏、防渗、防雨的措施,有耐腐蚀的硬化地面,地面无裂隙;设有防倾漏事故的应急措施,渗漏液收集处理;配备消防设备。有明显的危险废物识别标志,不相容的危险废物堆放区有隔离区隔断,中转堆放期限符合国家规定。一般固体废物暂存间的建设符合《一般工业固体废物贮存、处置场污染控制标准》(GB18599-2001)(2013年修订)的相关要求。垃圾临时堆场将采用混凝土硬化防渗措施并设防雨顶棚,做好防渗防淋措施。

一般固体废弃物统一收集后委托专业废品回收公司回收处理,危险废物按照《国家危险废物名录》、《广东省危险废物经营许可证管理暂行规定》和《广东省危险废物转移报告联单管理暂行规定》统一收集后交由具有《危险废物经营许可证》的机构进行回收并进行无害化处理处置,生活垃圾进行定点堆放,由环卫部门每日统一清运处置。

在采取上述措施的情况下,本项目的固体废物临时堆存对地下水环境的不良影响可以得到有效避免。

(2) 废水排放对地下水环境的影响

项目生产废水依托 1 号废水站处理后所排放污水水质执行《广东省水污染物排放限值》(DB44/26-2001)第二时段一级标准限值及第一类污染物最高允许排放浓度; 办公生活污水经三级化粪池处理后所排放污水水质执行《广东省水污染物排放限值》(DB44/26-2001)第二时段三级标准;项目产生污水处理达标后,排入汕尾市东区污水 处理厂污水,经汕尾市东区污水处理厂进一步处理后排入品清湖。

厂内污水处理系统及汕尾市东区污水处理厂厂场地基础均采取了防渗漏措施,蓄污池体均采用混凝土体防渗结构,因此正常工况下本项目废水产排不会对区域地下水环境产生影响。1号污水站配套事故应急池,发生事故时,确保事故状态下所有污水可以得到妥善的收集和处理。

(四) 运营期声环境影响预测与评价

项目生产车间内工艺设备的噪声一般在 60~70dB(A),均置于密闭厂房内,经建筑物隔声后对车间外环境的影响很小。对外界环境而言,项目本项目噪声源主要是排风机噪声,噪声值为 65dB(A)。

根据声源的特性和环境特征,选择点声源预测模式预测声源排放噪声随距离的衰减变化规律,计算各声源对预测点产生的声级值,并且与现状相叠加,预测项目建成后对周围声环境的影响程度。

- (1) 某个点源在预测点的倍频带声压级
- ①环境噪声值预测计算模式

A, L2=L1-20lg(r2/r1)- Δ L

式中:

- L2——点声源在预测点产生的声压级, dB(A);
- L1——点声源在参考点产生的声压级, dB(A);
- r2——预测点距声源的距离, m;
- r1——参考点距声源的距离, m;
- ΔL——各种因素引起的衰减量(包括声屏障、空气吸收等引起的衰减量), dB(A)。
- B、对两个以上多个声源同时存在时, 其预测点总声压级采用下面公式:

 $Leq=10log(\sum 100.1Li)$

式中:

Leg——预测点的总等效声级, dB(A);

Li——第 i 个声源对预测点的声级影响, dB(A)。

应用上述预测模式及参数计算厂界四周的噪声排放声级。计算结果见表 7-8。

表 7-8 本项目营运期设备噪声对 15 号厂房边界的预测及评价

预测点	时段	贡献值	监测值	叠加值	排放标准	是否达标
东厂界	昼间	18.65	59	59	65	达标
不) 介	夜间	18.03	48.5	48.5	55	达标
南厂界	昼间	16.88	57.5	57.5	65	达标
一	夜间		47.5	47.5	55	达标
西厂界	五二田 昼间	20.50	56.5	56.5	65	达标
<u>1</u> 14) 36	夜间	20.59	46.5	46.5	55	达标
北厂界	昼间	14.68	58	58	65	达标
46/ 26	夜间	14.00	46.5	46.5	55	达标

由表可见,本项目营运期设备噪声对 15 号厂房 4 个边界的噪声贡献值介于 46.5~59dB(A)之间,噪声排放均满足《工业企业厂界环境噪声排放标准》 (GB12348-2008) 3 类标准要求。

可见本项目在采取噪声控制措施后,产生的噪声对外环境的影响可接受。为控制本项目噪声对外界的影响,在生产运营期间应定期维护设备,维持设备及隔声降噪措施处于良好的运转状态,及时维修、更换老化、损坏的设备,避免由于设备运转不正常而产生的事故性噪声。

(五)运营期固体废物环境影响分析

本项目产生的固体废物有一般工业固废和危险废物。

(1) 一般固废影响分析

1) 生活垃圾

厂区内设置生活垃圾收集桶,交由环卫部门收集处理,对周围环境产生的影响不大。

2) 一般工业固体废物

- 一般工业固体废物处置方式: ①办公垃圾由环卫部门处理;
- ②废包装材料、废次品等由厂家或者废品回收公司回收利用。

综上,经严格的分类收集、储存、处置后,本项目产生的一般固体废物不直接 对外排放,会对厂区外环境造成影响在可接受范围。

- 2) 危险废物影响分析
- 1) 危险废物的临时贮存

本项目危险废物分类存放在 15 号厂房西北面的的危险废物暂存间,该危险废物暂存间应符合《危险废物贮存污染控制标准》(GB18597-2001)的要求。

- ①应合理设置不渗透间隔分开的区域,每个部分都应有防漏裙脚或储漏盘;危险废物应与其他固体废物严格隔离,禁止一般工业固废和生活垃圾混入;同时也禁止危险废物混入一般工业固废和生活垃圾中。
- ②定期检查场地的防渗性能。地面与裙脚要用坚固、防渗的材料建造,防止雨水径流进入堆场、避免渗滤液量增加,堆场周边应设置导流渠,并及时清理和检查渗滤液集排水设施及堵截泄漏的裙脚;收集的渗滤液及泄漏液应通过污水处理站处理后排放。
- ③强化配套设施的配备。危险废物应当使用符合标准的容器分类盛装,无法装入常用容器的危险废物可用防漏胶袋等盛装;禁止将不相容(相互反应)的危险废物在同一容器内混装;盛装危险废物的容器上必须粘贴符合标准的标签。
- ④装载液体、半固体危险废物的容器内须留足够空间,容器顶部与液体表面之间保留 100 毫米以上的空间。
- ⑤检查场区内的通讯设备、照明设施、安全防护服装及工具,检查应急防护设施。
- ⑥完善维护制度,定期检查维护挡土墙、导流渠等设施,发现有损坏可能或异常,应及时采取必要措施,以保障正常运行;详细记录入场固体废物的种类和数量以及其他相关资料并长期保存,供随时查阅。
 - 2) 危险废物的处置方式

废无尘布、废活性炭等危险废物委托有资质的单位进行处理。

在送往有资质的危险废物定点单位利用时严格执行《危险废物转移联单管理办

法》,《广东省危险废物经营许可证管理暂行规定》、《广东省危险废物转移报告联单管理暂行规定》中的规定执行,在转移前向环保部门提供利用方的危险废物经营许可证,并办理危险废物转移联单手续。禁止在转移过程中将危险废物随处倾倒而严重污染环境。

本项目分类收集、回收、处置固体废物的措施安全有效,去向明确。经上述"资源化、减量化、无害化"处置后,对环境的危害性大大减少。可将固废对周围环境产生的影响减少到最低限度,对周围环境产生的影响不大。

(六)环境风险分析

- (1) 风险评价等级与评价范围
- 1) 重大危险源辨识方法

经过危险物质识别和生产过程分析,根据《建设项目环境风险评价技术导则》 (HJ/T169-2004)以及《危险化学品重大危险源识别》(GB18218-2009)有关危险物质 的定义和储存的临界量来判断。

长期或临时生产、加工、搬运、使用或储存危险物质,且危险物质的数量等于或超过临界量的单元均为重大危险源。重大危险源的辨识依据是物质的危险性及数量。重大危险源分为生产场所重大危险源和储存区重大危险源两种。

单元内存在的危险物质的数量等于或超过危险物质规定的临界量,即被定为重大危险源。单元内存在的危险物质的数量根据处理物质种类的多少区分为以下两种情况:

- ①单元内存在的危险物质为单一品种,则该物质的数量即为单元内危险物质的 总量,若等于或超过相应的临界量,则定为重大危险源。
- ②单元内存在的危险物质为多品种时,则按下式计算,若满足下面公式,则定为重大危险源:

式中: q1、q2·····qn——每种危险物质实际存在量, t。

- Q1、Q2·····Qn——与各危险物质相对应的生产场所或贮存区的临界量,t。
- 2) 识别结果

根据工程分析结果,本项目生产过程中所涉及的原辅材料主要有乙醇。根据《危险化学品重大危险源识别》(GB18218-2009)对本项目的原辅材料、产品、中间产品

进行筛选识别,重大危险源识别结果如表 7-9 所示。本项目各危化品储存区的危险 化学品的 q/Q 总量未超过 1,不构成重大危险源。

表 7-9 本项目危险物质贮存量及临界量

序号	危险物质	临界量 Qi(t)	最大贮存量或排放量 qi (t)	qi/Qi
1	乙醇	500	0.03	0.00006

根据上表,项目 qi/Qi=0.00006<1,故本项目生产场所和贮存场所均未构成重大 危险源。

3) 评价等级与评价范围

按照《建设项目环境风险评价技术导则》(HJ/T 169-2004)中的有关规定,环境风险评价工作等级划分见表 7-10。

表 7-10 环境风险评价工作级别

	剧毒危险性物质	一般毒性危险物质	可燃易燃危险性物质	爆炸危险性物质
重大危险源		\equiv	_	
非重大危险源		\equiv		\equiv
环境敏感地区				

本项目生产场所和储存场所未构成重大危险源,且选址于非环境敏感地区,因此,本环境风险评价工作级别为二级,为了更好的进行风险防范和制定合理的应急措施,本次风险大气评价范围考虑设置为以项目所在地为中心,半径 3km 圆形范围内。

(2) 风险识别

1)物质风险识别

本项目所涉及的危险品特性详见下表 7-11。

表 7-11 危险化学品特性一览表

序	名	CAS 号	危险性	沸点	爆炸极限	LD	050	LC50
号	称	CAS 5	类别	$(^{\circ}\mathbb{C})$	(V%)	经口	经皮	/
1	乙醇	64-17-5	第 3.2 闪点液 体	78.3	上限: 19.0 下限: 3.3	7060mg/kg(兔 经口);	7430mg/kg(兔 经皮)	37620 mg/m³, 10 小时(大鼠 吸入)

2) 生产、储运过程有害因素识别

根据《企业职工伤亡事故分类》危险因素包括:物体打击、车辆伤害、机械伤害、起重伤害、触电、淹溺、灼烫、火灾、高处坠落、坍塌、放炮、火药爆炸、化

学性爆炸、物理性爆炸、中毒和窒息、其它伤害(如摔、扭、挫、擦、刺、割伤和非机动车碰撞、轧伤等)。根据本项目生产车间的危险化学品储运和生产工艺过程,本项目生产、储运过程有害因素识别结果如表 7-12。

危险类别 高、低锅炉、压 高处 火灾 噪声 单元名称 物体 车辆 机械 起重 中毒 触电 灼烫 温作 力容器 打击 伤害 伤害 伤害 坠落 爆炸 窒息 危害 爆炸 业 生产车间

表 7-12 生产、储运过程有害因素识别一览表

由表 7-11 可知,本项目主要的有害因素是火灾爆炸、中毒窒息。

(3) 最大可信事故的确定

根据《建设项目环境风险评价技术导则》(HJ/T 169-2004)的定义,最大可信事故是指在所有预测的概率不为零的事故中,对环境(或健康)危害最严重的重大事故。而重大事故是指有毒有害物质泄漏事故和导致有毒有害物质泄漏的火灾、爆炸事故,给公众带来严重危害,对环境造成严重污染。

最大可信事故所造成的危害在所有预测的事故中最严重,并且发生该事故的概率不为零。在上述风险识别、分析和事故预测的基础上,本项目的最大可信事故设定为:泄漏,其次是厂区发生火灾、废气事故排放及废水事故排放。

(4) 最大可信事故影响分析

确定本项目的最大可信事故为项目废气处理装置故障导致项目废气事故排放,由大气预测结果可知,废气处理装置出现事故时,废气污染物直接排放,导致周边环境空气污染物浓度显著增大,有机废气出现超标现象,因此建设单位要加强废气处理装置的日常维护,保证正常运行。

(5) 环境风险防范措施

1) 建筑安全防范措施

15 号厂房设置了室外消火栓系统保护、室内消火栓系统保护,生产车间设自动 泡沫喷淋灭火系统保护,设置消防水池。按《建筑灭火器配置规范》要求,在厂房 各危险生产场所及建筑物内设置一定数量的推车式及手提式干粉灭火器,同时配置 相当数量的防毒面具等逃生器材。

2) 火灾和爆炸防范措施

①控制和消除火源

生产过程中可能遇到的火源主要是维修明火、吸烟、电器火灾、静电火花、雷击、撞击火星等。应采取以下安全措施:

严禁吸烟,严禁携带火种(如打火机、不防爆的手机、照相机等)进入易燃易爆区域。动火作业之前必须落实各项检查步骤,并且在有效期内进行动火。设备设施安装静电接地,建、构筑物安装防雷装置。

- ②按要求严格制定相应的维修保养制度;完善消防设备和器材,确保正常可靠,建立健全岗位责任制,加强消防演练,提高事故应急救援能力,将事故控制在初发期。
 - ③设备设施应安装静电接地,建、构筑物安装防雷装置。
 - 3) 危险化学品贮运防范措施
- ①危险化学品入厂后,严格按照"非禁异物品隔离、禁异物品隔开"的有关危险品储存规定及安全要求管理。
 - ②做好防季节性灾害(如台风、雨季等)的防御工作。
- ③安全环保部门对危险化学品储存、使用情况进行日常监督检查,定期对本项目排放危险化学品(危险废物)性质及排放量情况以及废水、废气排放情况进行监测核定,检查结果及时反馈各车间,并做好记录。
- ④安全环保部门定期开展环境因素识别、评价及危险化学品调查评估,组织实施环境安全风险评价,将厂内环境安全风险降低至可接受水平。
 - ⑤强化危险化学品运输过程防泄漏措施。
 - ⑥本项目危险品采用桶装运输,经常检查阀门,防止泄露。
 - 4) 废气处理设施风险防范措施

废气处理设施发生故障时,应迅速查清故障点和故障原因,及时停工维修,直 到废气净化处理系统正常运作后方可继续生产。应制定完善的管理制度及相应的应 急处理措施,保证废气处理设施发生故障时能及时作出有效应对。

(5) 小结

本项目环境风险评价等级为二级,评价范围为以酸性废气排气筒为原点,半径为 3km 的圆形区域。

本项目最大可信事故为废气处理装置故障导致项目废气事故排放。对最大可信事故的分析结果表明,发生废气事故排放时,废气污染物直接排放,导致周边环境空气污染物浓度显著增大,事事故工况下 VOCs 最大落地浓度出现在 10m 处,处于承接范围内,最大落地浓度为 2.848mg/m³ 占标率为 474.67%,浓度高于评价标准值374.67%,但污染物处于本项目厂界范围内,不会对厂界外造成影响。因此建设单位要加强废气处理装置的日常维护,保证正常运行本项目最大可信事故源强距离居民区有一定的距离,风险可以接受。

八、建设项目拟采取的防治措施及预期治理效果

内容	排放源 污染物		污染物	防治措施	预期处理效果
水	办名	〉生活污水	CODcr、BOD5、 SS、氨氮、总磷	经工业区共建化粪池 处理达标后,排入汕尾 市东区污水处理厂进 行进一步处理	广东省地方标准《水污染 物排放限值》 (DB44/26-2001)第二时 段三级标准
· 污染物	生产废	清洗废水	CODcr、BOD ₅ 、 SS、氨氮、阴离 子表面活性剂	经工业区自建的1号废 水站处理达标后,排入 汕尾市东区污水处理	广东省《水污染物排放限 值》(GB44/26-2001)第
	水	反渗透 膜清洗 废水	pH、CODer、SS	厂进行进一步处理	二时段一级标准
大气污染物	回:	流焊废气	锡及其化合物	废气收集经活性碳 吸附处理后楼顶高 空排放,排放高度为 21m	锡及其化合物执行《广东省大气污染物排放限值》 (DB44/27-2001)第二时段二级标准,VOCs排放标准参照执行《印刷行业挥发性有机化合物排放标准》

	有机废气	乙醇、VOCs		(DB44/815-2010), 乙醇最高 允许排放速率按照《制订 地方大气污染物排放限值 的技术说明》 (GB/T13201-91)中有关规
固体废弃	一般固体废弃物	办公生活垃圾 含锡废纸、废钢 网 含乙醇锡渣、危 险废包装材料、	可回收部分交给厂商 回收利用,不可回收部 分交由环卫部门处理 暂存于15号厂房西南 面的危废暂存间,委托	不直接排放到周边环境, 对周边环境影响甚微
物		废活性碳	有危险废物处理资质 的单位回收处理	
噪声	生产车间设 备、风机	噪声	生产车间采取密闭处 理;加强设备维护与保 养,淘汰落后设备等	《工业企业厂界环境噪声 排放标准》 (GB12348-2008)中的3 类标准

生态保护措施及预期效果

- (1) 合理厂房内的生产布局, 防治内环境的污染。
- (2) 按上述措施对各种污染物进行有效的治理,可降低其对周围生态环境的影响,并搞好周围的绿化、美化,以减少对附近区域生态环境的影响。
- (3) 实施清洁生产,从源头到污染物的排放全过程控制,实现节能、降耗、减污、增效的目标。
 - (4) 加强生态建设,实行综合利用和资源化再生产。

九、结论与建议

(一) 项目概况

信利光电股份有限公司 15 号厂房 2 楼汽车驾驶智能辅助系统建设项目位于汕尾市城区工业大道中段南侧信利工业城内 15 号厂房第一层和第二层,建筑面积 8000 平方米,项目以 PCB/FPC(印刷电路板/软性线路板)、ECU(电子控制单元)主板、镜头等为原料,生产以太网摄像头模组 2400 万个/a,倒车智能后视系统、360 度全景泊车影像系统、车道偏离报警系统、夜视辅助系统、自适应巡航控制、驾驶员疲劳监控系统共 360 万套/a,总投资 3.46 亿元,员工 605 人,工作时间为 16 小时,实行两班制,全年工作 300 天。部分员工在信利工业城员工宿舍内住宿。项目预计于 2017 年底投入生产运营。

(二)产业政策及规划相符性分析

项目属于中华人民共和国国家发展和改革委员会 2011 年第 9 号令《产业结构调整指导目录(2011 年本)》、国家发展和改革委员会和商务部于 2017 年 6 月 28 日公布的《外商投资产业指导目录(2017 年修订)》及《广东省主体功能区产业发展指导目录(2014 年本)》(粤发改产业[2014]210 号)中的鼓励类项目,项目符合相关产业政策。

本项目符合土地利用规划,环境功能区划,总体布局合理,同时本项目周围没有风景名胜区、生态脆弱带等。对于本项目运营过程中产生的污染物将采取有效的治理措施,实现污染物达标排放。从环境保护、产业集群效应等方面分析,本项目选址是合理的。

(三)区域环境质量现状

(1) 环境空气质量现状

本项目环境空气监测数据引用汕尾市环境保护监测站和广东中科检测技术有限公司共同于2015年4月15日~4月17日在评价范围内的监测数据,其中氟化物、TVOC引用广东中科检测技术有限公司的监测数据,SO₂、NO₂、NO₂、NO₈、PM₁₀引用汕尾市环境保护监测站的监测数据,引用广东德群检测技术有限公司于2016年12月19日~12月25日对评价范围内新地村、信利员工宿舍和香洲社区东北侧对PM₂₅进行补充监测。

监测结果表明:常规监测指标 SO_2 、 NO_2 、 NO_x 、 PM_{10} 、 $PM_{2.5}$ 、氟化物能满足《环境空气质量标准》(GB3095-2012)二级标准要求。特征污染物指标 TVOC 满足《室内空气质量标准》(GB18883-2002)要求,没有出现超标现象,表明项目所在区域环境空气质量良好。

(2) 地表水环境质量现状

品清湖海水水质监测引用汕尾市环境保护监测站和广东中科检测技术有限公司于 2015年4月17日至19日、2015年4月27日至29日在东区污水厂排污口约100米水域、东区污水厂排污口约300米水域和距东区污水厂排污口约800米水域布设的3个监测点的监测数据,所引用的监测项目为水温、pH、DO、COD、BOD5、无机氮、活性磷酸盐、阴离子表面活性剂、悬浮物、石油类、铅、镉、氟化物、六价铬、镍,监测结果表明,品清湖各监测因子无论涨潮还是退潮均没有出现超标现象,地表水环境质量现状良好。

(3) 地下水环境质量现状

本评价引用广东德群检测技术有限公司于 2016 年 12 月 19 日对 D1 (汕尾市技工学校)、D2 (26 栋厂房边界)、D3 (32 号厂房边界)、D4 (新林社区北侧)、D5 (汕尾市交通安全教育学校)、D6 (港湾 1 号西侧)的地下水监测数据,其中 D5 和 D6 只监测水位,其余监测水质和水位,监测项目为水位、pH、氨氮、硝酸盐、亚硝酸盐、挥

发性酚类、阴离子合成洗涤剂、氯化物、砷、汞、铬(六价)、总硬度、铅、氟化物、镉、铁、铜、锰、溶解性总固体、高锰酸盐指数、硫酸盐、总大肠菌群,监测结果可知,监测期间 D1、D2、D3 和 D4 的氨氮和锰在均出现超标情况,D1、D2、D3 和 D4 其余的监测因子指标均满足《地下水质量标准》(GB/T14848-93)中的III类水质要求,说明区域地下水环境已受到一定污染,不能满足相应的地下水环境质量要求。

(4) 声环境质量现状

本次委托广东德群检测技术有限公司于 2017年7月5日~7月6日对项目东厂界、西厂界、南厂界和北厂界进行监测,监测结果表明,东厂界、西厂界、南厂界和北厂界的昼间、夜间现状监测噪声值均满足《工业企业厂界环境噪声排放标准》(GB12348-2008)3 类标准,说明项目所在区域的声环境质量良好。

(5) 土壤环境质量现状

本评价引用广东德群检测技术有限公司和广东中润检测技术有限公司于 2016 年 12 月 19 日,对评价区域的新地村居委会门口、信利员工宿舍门口和港湾 1 号西侧共 3 个土壤监测点进行监测,监测项目为 pH 值、汞、砷、镉、铅、铬、铜、锌、镍。由于《土壤环境质量标准》(GB 15618-1995)的适用范围为农林用地、自然保护区等 天然区域,本次监测土壤主要为建设用地和居住用地,暂无可供参考的评价标准,本次调查结果仅作为本底调查数据使用。

(四) 环境影响评价结论

(1) 施工期环境影响预测结论

本项目位于汕尾市城区工业大道中段南侧信利工业城内 15 号厂房第一层和第二层,属于信利工业城范围内,由于 15 号厂房已于 2006 年建设完毕,故无施工期环境污染问题。

(二) 运营期环境影响预测结论

1) 地表水环境影响评价

本项目产生的办公生活污水经三级化粪池预处理后由市政管网排入汕尾市东区污水厂,处理后最终排入品清湖。生产废水 1 号综合污水处理站进行处理,污水站处理后出水达到广东省地方标准《水污染物排放限值》(DB44/26-2001)第二时段一级

标准后由市政管网排入汕尾市东区污水厂,处理后最终排入品清湖。

因此,项目不直接对附近水体排放污水,对周边水环境造成的影响较小。

2) 地下水环境影响评价

本项目固废临时堆存间严格按照国家《一般工业固体废物贮存、处置场污染控制标准》(GB 18599-2001)和《危险废物贮存污染控制标准》(GB 18597-2001)相关要求采取防泄漏、防渗、防雨措施,对地下水环境的不良影响可以得到有效避免。

本项目生产废水依托现有处理设施处理达标后,排入汕尾市东区污水处理厂,经 汕尾市东区污水处理厂进一步处理后排入品清湖。厂内污水处理系统场地基础均采取 了防渗漏措施,蓄污池体均采用混凝土体防渗结构,因此正常工况下本项目废水产排 不会对区域地下水环境产生影响。

3) 大气环境影响评价

项目工艺废气包括回流焊废气和有机废气,回流焊废气经收集后通过 21 米高排气筒高空排放,锡及其化合物执行《广东省大气污染物排放限值》(DB44/27-2001)第二时段二级标准;有机废气经过活性炭吸附处理后通过 21 米高排气筒高空排放,VOCs参照执行《印刷行业挥发性有机化合物排放标准》(DB44/815-2010) II 时段标准。废气收集经活性碳吸附处理后楼顶高空排放,排放高度为 21m。

项目正常工况下 VOCs 的最大落地浓度出现在 10m 处,最大落地浓度为 0.134mg/m³,占评价标准的比例为 22.28%,浓度低于评价标准值,事故工况下 VOCs 最大落地浓度出现在 10m 处,处于厂界范围内,最大落地浓度为 2.848mg/m³ 占标率 为 474.67%,浓度高于评价标准值 374.67%。但污染物处于本项目厂界范围内,不会 对厂界外造成影响。可见,只要建设单位认真落实本评价提出的各项环境污染防治措施,加强管理,保证环保资金的投入,确保污染物达标排放,本项目排放的有机废气 对周边环境空气的影响比较小。

项目正常工况下回流焊废气外排锡及其化合物的最大落地浓度出现在 136m 处,最大落地浓度为 0.00007688mg/m³,污染物排放量极小。

由于本项目车间为一个相对封闭的环境,生产工序也均在封闭的设备中完成,全部气体通过风管分类收集,回流焊废气及有机废气的收集率为 100%,生产车间没有无组织排放源,因此不设定大气防护距离。

4) 固体废物环境影响评价

办公垃圾等一般固废由环卫部门清运处理。危险废物委托有相应资质的危废处理单位进行处理。厂区内危险废物暂存库按照《危险废物贮存污染控制标准》(GB18597-2001)建设和管理。

本项目运营过程中产生的各类固体废弃物从产生到最终的处置过程均有较为严格的控制措施,不会直接排放到外环境中,可将固废对周围环境产生的影响减少到最低限度,不会对周围环境产生明显的影响。

5) 声环境影响评价

对外界环境而言,本项目噪声源主要是生产设备。本评价依据《环境影响评价技术导则-声环境》(HJ2.4-2009),根据声源的特性和环境特征,选择点声源预测模式预测声源排放噪声随距离的衰减变化规律,计算各声源对预测点产生的声级值,并且与现状相叠加,预测项目建成后对周围声环境的影响程度。

根据预测结果可知,本项目公用设备东南西北四个边界的噪声预测值介于46.5~59dB(A)dB(A)之间,噪声排放满足《工业企业厂界环境噪声排放标准》(GB12348-2008)3类标准。

可见本项目在采取噪声控制措施后,产生的噪声对外环境的影响比较小。为保证 设备正常运转,在生产运营期间应定期维护设备,维持设备处于良好的运转状态,避免由于运转不正常而产生的噪声。

6) 环境风险影响评价

本项目最大可信事故为废气处理装置故障导致项目废气事故排放,根据预测结果,发生废气事故排放时,废气污染物直接排放,导致周边环境空气污染物浓度显著增大。事故工况下 VOCs 最大落地浓度出现在 10m 处,处于厂界范围内,最大落地浓度为 2.848mg/m3 占标率为 474.67%,浓度高于评价标准值 374.67%,污染物处于本项目厂界范围内,不会对厂界外造成影响。因此建设单位要加强废气处理装置的日常维护,保证正常运行。本项目最大可信事故源强距离居民区有一定的距离,风险可以接受。

(六) 综合结论

本项目符合国家、广东省的产业政策和汕尾市相关规划要求,评价区域环境质量

良好,建设单位	立在认真落实本评价提出	出的各项环境》	5染防治措施,	加强管理,	保证环
保资金的投入,	确保污染物达标排放,	在此前提下,	本项目的建设	设从环境保护	角度而
言是可行的。					
77					
预审意见:					
公 章					
经办人:		年	月日		

15号厂房2楼汽车驾驶智能辅助系统建设项目

下一级环境保护行政主管部门审查意见:	
	公 章
经办人:	年 月 日
审批意见:	
甲仉忌见:	

15号厂房2楼汽车驾驶智能辅助系统建设项目

()	
公 章	
经办人:	年 月 日

附件1引用监测报告

报告编号: DQ -2016121901

报告编制说明

- 一、本公司保证检测的公正、准确、科学和规范,对检测的数据负责,并对受检单位所提供的样品和技术资料保密。
- 二、本报告仅对来样或采样分析结果负责。
- 三、本检测结果仅代表检测时受检单位提供的工况条件下项目测值。
- 四、本报告无签发人签名,或涂改,或增删,或无本公司检验检测专 用章、骑缝章和计量认证**还全**章无效。
- 五、未经本公司书面同意,不得部分复制报告,不得用于商业宣 传。
- 六、对检测报告有异议,请于收到检测报告之日起 10 日内向本公司 书面提出,逾期视为认可本报告。
- 七、本报告只适用于检测目的的范围,参照/执行标准由受检单位提供,其有效性由受检单位负责。

报告编号: DQ -2016121901

一、检测目的 受该企业委托对其环境质量状况进行检测。

二、检测内容

检测类别	采样位置	检测项目	采样时间	分析时间	样品性状
	D1 汕尾市技工学校	水位、pH值、氨 氮、硝酸盐、亚硝酸			微黄色、无味、 无浮油、微浊
	D2 26 栋厂房边界	盐、挥发酚、阴离子 表面活性剂(LAS)、 氯化物、砷、汞、六		- W. C.	无色、无味、无 浮油、清
地下水	D3 31 栋厂房边界	价铬、总硬度、铅、 氟化物、镉、铁、 铜、锰、溶解性总固	2016-12-19	2016-12-19	微黄色、无味、 无浮油、微浊
	D4 新林社区北侧	体、高锰酸盐指数、 硫酸盐、总大肠菌群		2016-12-21	微黄色、无味、 无浮油、微浊
	D5 汕尾市交通安全 教育学校	水位		G C	
	D6 港湾 1 号西侧	水区			-
	Q1 新地村居委会门口		2016-12-19 ~ 2016-12-25	2016-12-20 - 2016-12-26 -	
环境空气	Q2 信利员工宿舍门口	PM _{2.5}			
	Q3 香洲社区东北侧				
	T1 新地村居委会门口	pH 值、汞、砷、 镉、铅、铬、铜、	2016-12-19	2016-12-19	黄棕色、潮
土壤	T2 信利员工宿舍门口				黄棕色、潮
MARKET	T3港湾1号西侧	锌、镍			黄棕色、潮
15	1# 西面厂界外 1m 处			2016-12-19	米小口、 例
噪声	2#北面厂界外 1m 处	2000	2016-12-19		
***	3#东面厂界外 1m 处	厂界噪声	~ 2016-12-20		- 1
	4#南面厂界外 1m 处			18-	
采样人员	江沛恒、谭锦	池、林灼波	分析人员		唐永红、 、温雪刚

报告编号: DQ -2016121901

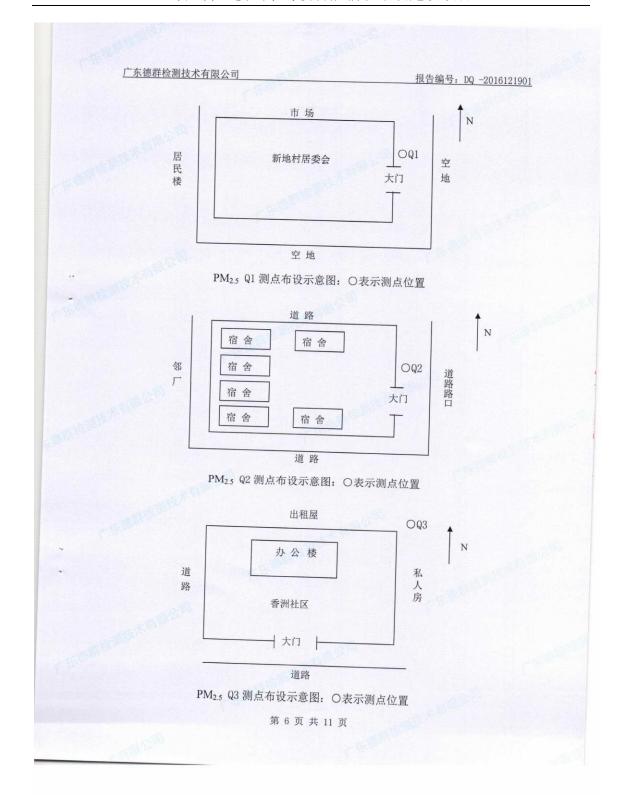
三、检测结果

3.1 地下水

		检测点位置及检测结果					
检测项目	D1 汕尾 市技工 学校	D2 26 栋 厂房边 界	D3 31 栋 厂房边 界	D4 新林 社区北 侧	D5 汕尾 市交通 安全教 育学校	D6 港湾 1 号西侧	单位
水位	7.35	6.42	8.12	6.05	6.43	5.54	m
pH值	7.00	6.96	6.81	6.80	75-	25-	无量纲
氨氮	0.784	0.792	0.781	0.794	-	-	mg/L
硝酸盐	1.0	0.9	1.0	1.0	-	_	mg/L
亚硝酸盐	ND	ND	ND	ND	_	_	mg/L
挥发酚	ND	ND	ND	ND	_	_	mg/L
阴离子表面活性剂 (LAS)	ND	ND	ND	ND		-	mg/L
氯化物	26.5	23.8	30.6	28.1		-	mg/L
砷	ND	ND	ND	ND	-	-	mg/L
汞	ND	ND	ND	ND	-	_	mg/L
六价铬	ND	ND	ND	ND	-	一层	mg/L
总硬度	300	291	284	301	_	4	mg/L
铅	ND	ND	ND	ND	_	-	mg/L
氟化物	0.8	0.6	0.8	0.6	-	-	mg/L
镉	ND	ND	ND	ND	_	-	mg/L
铁	0.26	0.30	0.21	0.25	_	-	mg/L
铜	ND	ND	ND	ND	-	-	mg/L
锰	0.43	0.36	0.39	0.41	-	100	mg/L
溶解性总固体	534	521	481	549	-	-	mg/L
高锰酸盐指数	1.13	1.05	1.08	1.21	-	_	mg/L
硫酸盐	68	73	65	68	_	_	mg/L
总大肠菌群	ND	ND	ND	ND	-	_	CFU/mL

注: 1、"—"表示该项目不作检测;

2、"ND"表示未检出,检出限见"四、检测方法附表"部分。


第 4 页 共 11 页

报告编号: DQ -2016121901

3.2 环境空气

检测项目	检测点位	检测时间	检测结果 (mg/m³)	气象参数
N. S.		2016-12-19	0.047	气温: 19.7℃; 气压: 100.7kPa; 风向: 东风; 风速: 1.1m/s
		2016-12-20	0.044	气温: 21.7℃; 气压: 100.5kPa; 风向: 东风; 风速: 1.1m/s
		2016-12-21	0.052	气温: 18.6℃; 气压: 100.8kPa; 风向: 东北风; 风速: 0.6m/s
	Q1 新地村居 委会门口	2016-12-22	0.060	气温: 20.7℃; 气压: 100.4kPa; 风向: 北风; 风速: 0.8m/s
	3/201	2016-12-23	0.053	气温: 19.4℃; 气压: 100.6kPa; 风向: 东风; 风速: 1.2m/s
		2016-12-24	0.044	气温: 18.9℃; 气压: 100.5kPa; 风向: 东风; 风速: 0.8m/s
		2016-12-25	0.053	气温: 18.7℃; 气压: 100.6kPa; 风向: 东北风; 风速: 0.9m/s
		2016-12-19	0.045	气温: 20.1℃; 气压: 100.7kPa; 风向: 东风; 风速: 0.8m/s
		2016-12-20	0.043	气温: 21.0℃; 气压: 100.5kPa; 风向: 东风; 风速: 0.9m/s
- 1/R	Q2 信利员工 宿舍门口	2016-12-21	0.042	气温: 18.1℃; 气压: 100.8kPa; 风向: 东北风; 风速: 0.5m/s
PM _{2.5}		2016-12-22	0.055	气温: 20.0℃; 气压: 100.4kPa; 风向: 北风; 风速: 1.1m/s
		2016-12-23	0.046	气温: 19.7℃; 气压: 100.6kPa; 风向: 东风; 风速: 1.0m/s
		2016-12-24	0.051	气温: 19.3℃; 气压: 100.5kPa; 风向: 东风; 风速: 1.0m/s
		2016-12-25	0.046	气温: 18.9℃; 气压: 100.6kPa; 风向: 东北风; 风速: 0.7m/s
		2016-12-19	0.047	气温: 20.5℃; 气压: 100.7kPa; 风向: 东风; 风速: 0.9m/s
		2016-12-20	0.058	气温: 21.5℃; 气压: 100.5kPa; 风向: 东风; 风速: 0.9m/s
		2016-12-21	0.065	气温: 18.3℃; 气压: 100.8kPa; 风向: 东北风; 风速: 0.4m/s
	Q3 香洲社区 东北侧	2016-12-22	0.066	气温: 20.5℃; 气压: 100.4kPa; 风向: 北风; 风速: 1.2m/s
		2016-12-23	0.057	气温: 19.9℃; 气压: 100.6kPa; 风向: 东风; 风速: 1.0m/s
		2016-12-24	0.057	气温: 19.9℃; 气压: 100.5kPa; 风向: 东风; 风速: 0.9m/s
		2016-12-25	0.057	气温: 19.1℃; 气压: 100.6kPa; 风向: 东北风; 风速: 0.7m/s

第 5 页 共 11 页

报告编号: DQ -2016121901

3.3 土壤

检测项目	检测点位置及检测结果				
EWA	T1 新地村居委会门口	T2 信利员工宿舍门口	T3 港湾 1 号西侧	单位	
pH值	7.00	6.91	7.06	无量纲	
汞*	ND	ND	ND	mg/kg	
砷*	ND	ND	ND	mg/kg	
镉*	0.01	0.02	0.02	mg/kg	
铅*	53.5	37.6	49.0	mg/kg	
4*	47.7	65.5	75.2	mg/kg	
铜*	35.7	22.3	26.8	mg/kg	
锌*	52.4	46.3	54.7	mg/kg	
镍*	7.24	5.41	6.05	mg/kg	

- 注: 1、所采土壤类型为砂壤土,植被类型为草木;
 - 2、"ND"表示未检出,检出限见"四、检测方法附表"部分;
 - 3、*项目检测结果来自分包方:广东中润检测技术有限公司 (资质证书编号为: 2015191969U)。

报告编号: DQ -2016121901

3.4 噪声

检测点位置		检测时间		主要声源	检测结果
52.A				工女产你	Leq(dB(A))
1# 西面厂界外 1m 处		昼间	11:12	7. 11 40 -1-	58
		夜间	22:06	工业噪声 -	48
2# 北面厂界外 1m 处	700	昼间	11:19		59
	2016-12-19	夜间	22:15	工业噪声	48
3# 东面厂界外 1m 处	2010-12-19	昼间	11:26	Tet II an etc	59
		夜间	22:23	一 工业噪声	49
4#南面厂界外 1m 处		昼间	11:33	工业噪声 -	57
in in any or or in the		夜间	22:31		46
1# 西面厂界外 1m 处		昼间	13:35		58
7/7/ 12	Call Water	夜间	22:06	工业噪声	45
2# 北面厂界外 1m 处	2016-12-20	昼间	13:45	工业噪声	58
		夜间	22:15		47
3# 东面厂界外 1m 处	2010 12-20	昼间	13:58		56
		夜间	22:23	工业噪声	48
4#南面厂界外 1m 处		昼间	14:10		59
	III XL	夜间	22:31	工业噪声	47

噪声测点布设示意图: ▲表示测点位置

第 8 页 共 11 页

报告编号: DQ -2016121901

四、检测方法附表

4.1 地下水

检测项目	检测方法	方法标准编号	使用仪器	检出限
pH 值	便携式 pH 计法	《水和废水监测分析方法》(第四版增补版)国家环保总局 2002年3.1.6.2(B)	便携式 pH 计 F2-S	1
氨氮	水质 氨氮的测定 纳氏试剂分光光度法	НЈ 535-2009	紫外可见分光 光度计 TU-1900	0.025mg/L
硝酸盐 (以N计)	紫外分光光度法 《生活饮用水标准检验方法 无机非金属指标》	GB/T 5750.5-2006 (5.2)	紫外可见分光 光度计 TU-1900	0.2 mg/L
亚硝酸盐氮	水质 亚硝酸盐氮的测定 分 光光度法	GB/T 7493-1987	紫外可见分光 光度计 TU-1900	0.001mg/L (30mm 比色 皿)
挥发酚	水质 挥发酚的测定 4-氨基安替比林分光光度法 (萃取法)	HJ 503-2009	紫外可见分光 光度计 TU-1900	0.0003mg/L
阴离子表面活性 剂(LAS)	亚甲蓝分光光度法 《生活饮用水标准检验方法 感官性状和物理指标》	GB/T 5750.4-2006 (10.1)	紫外可见分光 光度计 TU-1900	0.05mg/L
氯化物	硝酸银容量法 《生活饮用水标准检验方法 无机非金属指标》	GB/T 5750.5-2006 (2.1)	滴定管	1.0mg/L
砷	水质 汞、砷、硒、铋和锑 的测定 原子荧光法	НЈ 694-2014	原子荧光光谱 仪 SK-2003AZ	0.3μg/L
汞	水质 汞、砷、硒、铋和锑 的测定 原子荧光法	НЈ 694-2014	原子荧光光谱 仪 SK-2003AZ	0.04μg/L
六价铬	水质 六价铬的测定 二苯碳酰二肼分光光度法	GB/T 7467-1987	紫外可见分光 光度计 TU-1900	0.004mg/L
总硬度	乙二胺四乙酸二钠滴定法 《生活饮用水标准检验方法 感官性状和物理指标》	GB/T 5750.4-2006 (7.1)	滴定管	1.0mg/L
铅	水质 铜、锌、铅、镉的测 定原子吸收分光光度法(螯 合萃取法)	GB/T 7475-1987	原子吸收分光 光度计 AA-7003	0.01mg/L

第 9 页 共 11 页

附件2噪声监测报告

MA	正本
检测报	告
TEST REPOR	T
报告编号: DQ-2017070502	
检测类别: 噪声	
检测类型: 委托检测	
受检单位: 信利光电股份有限公司	
编写: 被 涵音	
复核: 黃 、城	
签发: 张 术,	
	1
签发日期:=0 七年 七月十四日	C.
中国全国的社会 (1981年) (1981	*
广东德群检测技术有限公司工程验检测专用	草)
OTC 广东 德 群 检 测 技 术 ** ** ** ** ** ** ** ** ** ** ** ** *	有限公司
the state and apparent apparents (A.W.	温 南 路 73 号 0769-22220166
100 O+ 114 OC	: www.dequn-gd.com

报告编号: DO-2017070502

报告编制说明

- 一、本公司保证检测的公正、准确、科学和规范,对检测的数据负责,并对受检单位所提供的样品和技术资料保密。
- 二、本报告仅对来样或采样分析结果负责。
- 三、本检测结果仅代表检测时受检单位提供的工况条件下项目测值。
- 四、本报告无签发人签名,或涂改,或增删,或无本公司检验检测专 用章、骑缝章和计量认证**还**全无效。
- 五、未经本公司书面同意,不得部分复制报告,不得用于商业宣 传。
- 六、对检测报告有异议,请于收到检测报告之日起10日内向本公司 书面提出,逾期视为认可本报告。
- 七、本报告只适用于检测目的的范围,参照/评价标准由受检单位提 供,其有效性由受检单位负责。

第2页 共6页

报告编号: DO-2017070502

一、检测目的

受该企业委托对其厂界环境噪声排放状况及指定点位声环境质量进行检测。

二、检测概况

检测期间企业正在生产中。

三、检测内容

检测类别	網点编号	拠点位置	检测因子	检测日期
	1#	15 号厂房週侧厂界外 1m 处		
	2#	15号厂房北侧厂界外 Im 处		2017-07-05 2017-07-06
	3#	15 号厂房东侧厂界外 Im 处		
	4#	15号厂房南侧厂界外 1m 处	厂等环境噪声 (昼夜)	
0英油	59	23 号厂房西侧厂界外 Im 处		
	6#	23 号厂房出侧厂界外 1m 处		
	7#	23 号厂房东侧厂界外 1m 处		
	8#	23 号厂房南侧厂界外 Im 处		
	9#	高级员工宿舍区西侧界外 Im 处	环境吸声	

四、检测结果

4.1 15号厂房噪声

表一: 15号厂房 2017年7月5日检测结果

件位: dB(A)

拠点 編号	测点位置	检测时间			检测结果	
		長间	校网	主要声源	任何	校(0)
1#	15号厂房再侧厂界外 1m 处	9:05	22:42	生产设备	56	46
2#	15号厂房北侧厂界外 Im 处	9:21	22:58	生产设备	58	47
3#	15 号厂房东侧厂界外 1m 处	8:33	22:10	生产设备	59	48
4#	15号厂房南侧厂界外 1m 处	8:49	22:26	生产设备	57	47

第3页 共6页

报告编号: DO-2017070502

表二: 15号广房 2017 年 7 月 6 日檢測结果

单位: dB(A)

测点 编号	测点位置	检测时间		主要声频	检测结果	
		挺间	校(60	21,302,000.00	6E(0)	夜间
18	15号厂房西侧厂界外 1m 处	9:36	22:37	生产设备	57	47
28	15号厂房北侧厂界外 Im 处	9:52	22:53	生产设备	58	46
3#	15号厂房东侧厂界外 1m 处	9:04	22:05	生产设备	59	49
4#	15号厂房南侧厂界外 1m 处	9:20	22:21	生产设备	58	48

4.2 23号厂房噪声

表一: 23号厂房2017年7月5日检测结果

单位: dB(A)

勘点	20 Co 417 W	检测时间		主要声源	检测结果	
编号		68(4)	夜间	主要产品	#E(0)	夜间
5#	23 号厂房再侧厂界外 Im 处	11:06	00:35	生产设备	58	49
6#	23 号厂房北侧厂界外 Im 处	11:22	00:51	生产设备	57	46
7#	23 号厂房东侧厂界外 1m 处	10:34	00:03	生产设备	57	48
8.0	23 号厂房南侧厂界外 1m 处	10:50	00:19	生产设备	56	47

表二: 23号厂房 2017年7月6日检测结果

(6(0) dB(A)

201.00		检测时间		-0.007.00.000	检测结果	
编号		壁间	夜间	主要声源	長间	使例
78	23 号厂房西侧厂界外 Im 处	11:32	00:40	生产设备	59	49
6#	23 号厂房北侧厂界外 Im 处	11:48	00:56	生产设备	57	47
58	23 号厂房东侧厂界外 1m 处	11:00	00:08	生产设备	58	48
8#	23 号厂房南侧厂界外 Im 处	11:16	00:24	生产设备	.56	48

第4页 共6页

报告编号: DO-2017070502

4.3 高级员工宿舍区

表一:高级员工宿舍区 2017年7月5日检测结果

单位: dB(A)

辦点 編号	侧点位置	检测时间		主要声源	检测结果	
		极间	夜间		昼间	夜间
9#	西侧界外 Im 处	14:29	01:31	道路交通	58.9	49.7

表二: 高级员工宿舍区 2017年7月6日检测结果

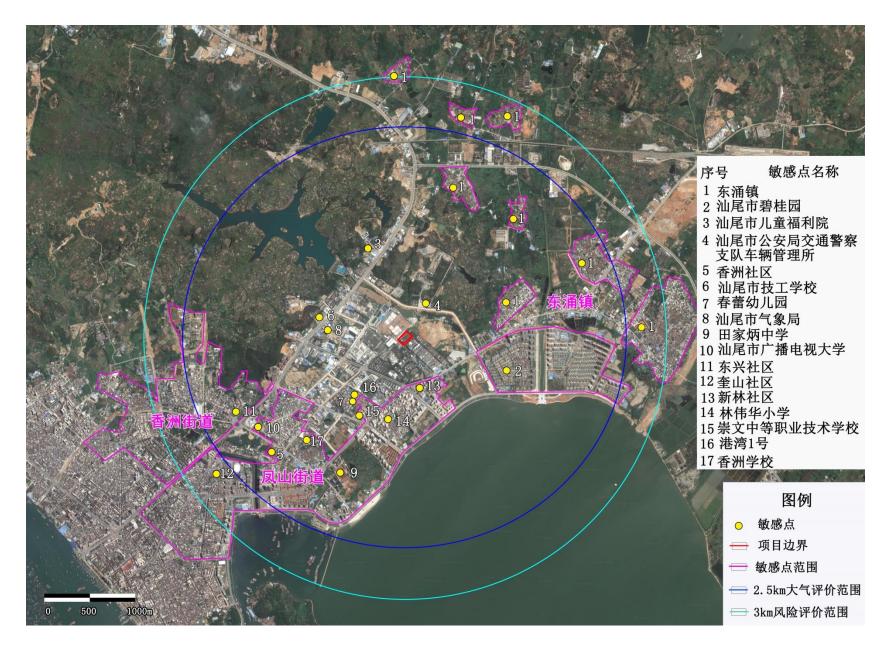
华位: dB(A)

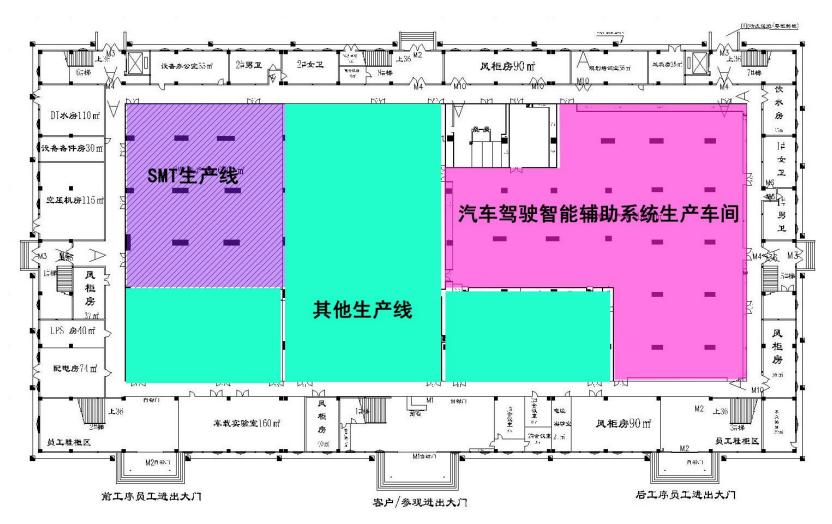
湖点 編号	夠点位置	检测时间		主要声源	检测结果	
		任何	夜河	35.367.11	母间	夜间
9#	西侧界外 Im 处	13:29	01:45	道路交通	59.1	48.9

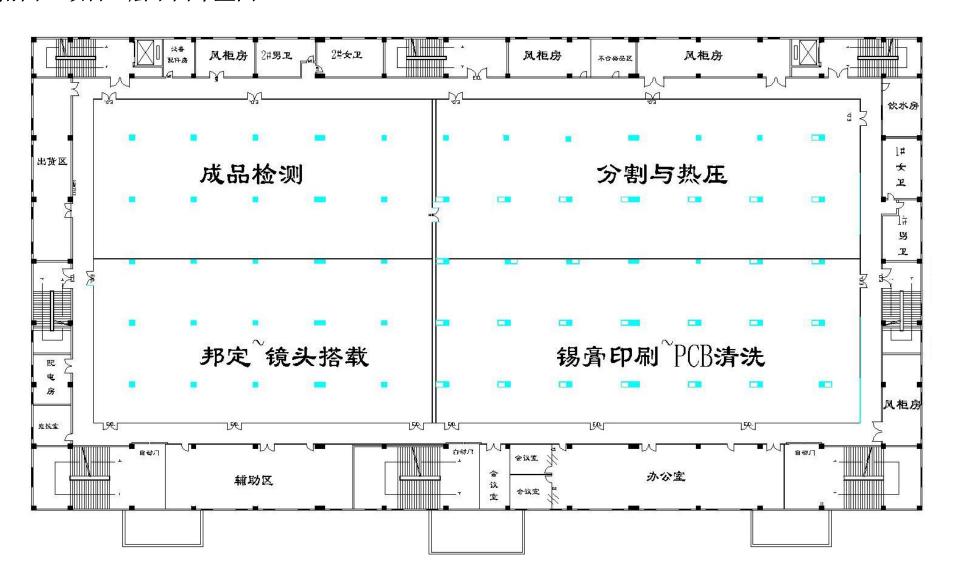
噪声测点布设示意图

第5页 共6页

广东總歷检测技术有限公司 报告编号: DO-2017070502 五、检测方法附表 检测项目 方法标准编号 使用仪器 超出限 检测方法 多功能声级计 AWA6228-6 《工业企业厂界环境噪声 噪声 GB 12348-2008 25~125dB(A) 排放标准》 多功能声级计 AWA6228-6 (声环境质量标准) 环境噪声 GB 3096-2008 25-125dB(A) **本报告到此结束** 第6页 共6页


附图1项目位置示意图


附图 2 项目四至图


附图 3 环境敏感点分布

附图 4 项目一层平面布置图

附图 5 项目二层平面布置图

